AR RN RE S B

=
1
X
A

=h
pal

PRI BN
JERBL: 1
HR B ZRAD
BR TR
C T

RIXHHE -

A

FRERE

IR AURIFE T SRR AR EIE S E R T AR
[iNIZAS
T Tk K
FUMN T P X BB FEK 288 S

310023
huyahong@zjut.edu.cn
13073638970

2023.04.25

L FETUHARAE

2022.1-2022.12

(1) et 50 B 509 BEATI 0 SR, 52 2 B 57 P VB 91 45 5 0

(2) BihSeBLr thoh AR A BULT B, BASREU S0 R ROARIE AL 27

(3) SMHTIN AR BT RO AIRE AL, BT 4
2. EERSHREAR
21 SEETRHR

A LS T 590 B 500 2 ISR SCIR, 6% £ B 7 SRR 545
ST T VR, FEMCRER L, AT SER IR B T PRI A R
7o HET bucket HIFTIAIXTFE. DYALAIIAIEI M DA DAk L DL AL
TGS A BT A
(1) PRI IR

T 3 TERHR S S TN RO BB, AT SR S+ 7 ARt
T il 4 TCHEAT IR . TRV 0 1R T 7 0 T A MR BRI T B, DR — A
B BT AT AL 2 T AN, B (DL — Mt . S S TG RO AR Hh R P %
BRR, AR SAT A L AME , E 1 R

- DHRESR AR

— M LA

ThREFIIREIL — HTEA
IR S ot
— M

N —
— On/MB 1A

B 1 ThEE AR BT R R
B 1, DhRe AR TR U R OT L) FE DI REER, Bl s . &2
eI, PIEEMESE, SR OCHNA (CBFE AR N IME) FRox, Bla“iiig (100
T8 "o BN I FROR TR AR], R AR O R B] T 2 AB I 1A 2)
% R BEAT T B B BN T BB . A AN A IR B K, Hd A
K7, RBNTRANT] R . B, TR e220V [, 4220V)
TR AZ Lo] HL 1] R B (R AE M 1]

(2) ETF bucket K FEX5F

FEAS F O8] V20T D e B 70 B N T BEAT R IR EE, | T 8] SR A7
FE, AR SR A B i A8 R SCs A ATREAN R, XA R BN)
e BRG] UL IC O¢ R A R AW o i an, X5 T % A\ “electricity supply” F1“electric
power supply”, A A H: 4% 02 17] electricity supply # electric power supply /& 8] i,
B TRHUE, P LA SEBR A [F] — M N AN Rk o SRTAT, A Al MR 2
AHE AW, TR P S [A

FEFS FRPAAR R, SZANE SRS SRR, XA OGN . i,
AWHPEH T —META Cbucket) [1)[R] SCial e BEATL I kA 2 5G] dal L,] S
FRFEI R E— R, BN — M8 (tag) Rom. & T bucket %
] 1A S AR BOD RN R

(a) DR A I s, A& —AME, Iy s E AR
R HME—FRIRARE, A5 BB 9 s as I 28 — > 538, sovEiseit i
FEAMRAR 1] B B AZ

(b)) AN B TS 0 22 1A] SN, AR X AN B 1A 5 IAT & A AR 25 1] 22
[HARACARE . 4135 5 BB NI N SRR 2E] . E B Dok e 2ok o o4
Top-N MHEE IR I —AS, &2 A HATE— A0

gL A LS, FERR N, AFRETE R — AN R A [R] 1]
A — MRS ATE, AT R RE 0 2k (R B S RERIY, BT 2 SR Rl A2 AE
T2, Bt TR A0 B 3 B A W AR 9 . AR IR A sk i] 1
HEAT UGB, AR BEAEAE Ffi“electricity supply, electric power supply”, LA electricity
supply NARZEiA], B4 ANE Wit I d B “electricity supply” % “electric power supply”
IR TIREIHIAN, A2 3 ShEE Ay “electricity supply” J& ##ifi 22 AR FE

(3) TheesiR BB KB
AT A R0R B AT D RE ST A7 Gk, b R R R Y R R OR T
REHLTT, R RS AT BE T VL AC R &R BRI R B E B g 1
B o
R 1 RRERE Y SE R

JE e
ID BT RE B IGLE D A AR B o o — AR 1
i R KT DIfe B0 T Re % i 2 F P 75 SR 2R, mTEUE P T 75 oK
FE2 TSR A 75 oK

ThEeSRA | ThRg s TR S RE RIS, T HUE NFARTIRE . ORI
HE~ Al D RERT Ul DI e

LI ThREH TSN, B +HE A" R . AT UAEZ

g

it B = ok s R W i R e i o N 1 Y = R

SR | DhRe S EA, SRR

FFE THRERTR BT HIRFAE, R OB R] CELd A4 AR SR RLIRED

Ror

BIAVLECT A | 2 NIIEEHTT ID MRS, Fa T IIIRe oot 5 2l
Dhae oo A LA

B VLR A | NIRRT ID MRS, AT IR RTINS 2l
Dhhg H o H Hi UL AT

—/NTREFTT IR et UC G TS /R SE T ZhRERNIR B T 5 T RE LT
TR PRI
(4) Theg B TLRRE %

AT BE S ICFU MFU, UL E SR FURIFU; %N AN% B A7 7E DURC G
Fo KL, XA B2 ICEE R & G AT AL T [— 4> bucket
- ELARTH RS 6L T4 N A
BN IIREHTTHE N RIR BRI, 75 248 D) Ae t oo UL BE S e i
ONUCTES sOFAT H DU HS A DORE B UL S iR i T
BIN: ThEEEICFU, M N R S
Rt FU RIS VLY SR A AL e UL RC T &
(@) K Hi AR B b A DhRE RTINS ILRC I RE TS & M s
(b) M # @if, MM B —ADIIRERITTFU; (L # §), AT
i. WRFU B 5 FU RS ULES, WHSFU; 91D TRNFU, %\ DL BC TS
JE e
i. BN, HFU RS SFU RS ULAC. UL, WK FU) 1D
JENFU; %t VERE Y R
iii. KFU M B .
() Hikss

22 FEMRMR

AAFE LT H BB TR B s R T, e AT SR S — R (3T
{Advanced Engineering Informatics)). FEZH{E B I 5%

B %

P EE RN

310009 i

PPN T BSERE 9 SHRIENFE 22)2 B E FUNRELFRHSIGHRL
.
it

HERHBH (0571-87242818) 2023 i 03 ﬂ 06 H

VIRV MARERRIY 0 A

ES . 202310202577.X EXFS: 2023030600582030

THAHEXZXHEEND

ARIE L)58 28 6 MO H TN 55 38 45, 58 39 KRAHUE, HE AR LR REChERFETHE
S, BUERERNHIES . HiEH S E SRR

BIES: 202310202577X

FEH: 2023403 A o6 H

B #HL A

BN LT

KHAGIE AR TR R S A AT T T ER R R SR R T

Zf%sk, EFRAIRFERUEEAR R SO

RUREDRAS 1 45 3 DLAURIERMEL 410

WA 14 9 11

AR 1433 1

AR CE N s i il

FHRF R RAS 1 6y 4 TT

ST AR SO 1

FHET E45: 329610

bt

LETARE S R a2 BERB 2R, IR ICRRNE S R RTRSRERN AL — B, mTRAR SRR U=
EREILE.

2HEAIREE RSB RB B2, BEEZHAUSE SR TER, S Y. B SYES,

@iﬁ&

s N

i PR S e FEA

HEAIL: 010-62356655

200101 AeA-AE, BT 100088 ALATHTIEE] NP 1 I60E 6 5 ESHERUS SR S Ak ‘
2022.10 F\Eiﬁgjﬁ%gﬁEﬂ%ﬂ\IV,%J]-E?%Z%EU\F&?iﬁ-ﬂh\i&ﬁ‘fﬁi&tﬁh B A HUESS, DS EBIEAEA
AR AR

Innovation design orientedfunctional knowledge integration

framework based onreinforcement learning

. * .~ b . . b ~r b -
Xiang Lan®,Yahong Hu" , YoubaiXie™, XianghuiMeng’, YilunZhang’, Qiangang Pan’
* College of Computer Science and Technology, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310023, China
®School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China

¢ School of Mechanical Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China

Abstract

According to the basic law of Design Science, new product design is based on existing design
knowledge. Knowledge integration can be applied to product function design to shorten design
timeand improve the design quality through effective use of the existing knowledge. With the
increase of the product design complexity and the number of design knowledge, itis harder and
harder for traditional traversal-based algorithms tocomplete knowledge integration under
acceptable time cost. A Reinforcement Learning (RL) based functional knowledge integration
framework is proposed. Thefunctional knowledge is represented by its input and output, and
organized using a knowledge graph.The Q-network is constructed and trained for the deep Monte
Carlo method-based functional unit chain generation algorithm. The performance experiments
show that comparing with the traditional searching algorithms, the RL based algorithm can
provide same quality design scheme with much shorter time. The proposed algorithm is promising
to realize real-time functional knowledge integrationin large-scale knowledge bases.

KeyWOl’dS: Functional knowledge integration; Computational design synthesis;

Reinforcement Learning; Knowledge graph

1 Introduction

Innovative design is the key for companies to maintain market competitiveness. Conceptual
design, as the initial stage of design, has always attracted much attention. According to the
fundamental law of Design Science, new product design is based on existing design knowledge.
Knowledge integration, or design synthesis, means to search and reuse existing design knowledge
to assist new product design. Different from designers’ traditional internal search methods such
as brainstorming, knowledge integration can be combined with computer technology conveniently,
and various computer-aided conceptual design scenarios see its application. During product design,
it is widely accepted that the satisfaction of product function requirements is the primary
consideration of designers [1,2,3,4]. Function design is the starting point for the following

*Corresponding author at: College of Computer Science and Technology, Zhejiang University of Technology,
Hangzhou 310023, China
Email: huyahong@zjut.edu.cn

structure design and behavior design. Therefore, this paper focuses on the function level design
synthesis, i.e., functional knowledge integration (FKI). In more detail, FKI is the search and
combination of existing functional knowledge through automated algorithms to generate
innovative solutions that meet the product’ s target function requirements.

In general, a function is described by its inputs and outputs. Knowledge for function design is
stored in the knowledge base (KB) in the form of functional units (FU), the smallest reuse unit of

FUO 1o
Air » Warm . Functional unit: .
air —Warm air— Carrier
Electricity—* plower

(@)

Search in the design functional
knowledge base

Input/Output: ———»

FU2 FU3

All ’ Air :
Fan |—Airflow—»| Warm air»

FU1 J—’ heater
—Electricity T |_Mechanical

energy

(b)

Fig. 1. An example of FKI.

function design knowledge.A simple example of the warm air blower design is shown in Fig. 1.
The requirement, as well as the function of this product, is to provide warm air, and the inputs and
output of the blower are given in Fig. 1(a). FKI is introduced to find a possible way to design this
product by searching a given knowledge base, and it finds that three functional units, i.e., FU1
(motor), FU2 (fan), and FU3 (air heater), are suitable. According to the inputs and outputs of these
FUs, the design can realize the function of the warm air blower by linking them together, as shown
in Fig. 1(b).

Nowadays, the complexity of the design task is increasing day by day. An intuitive
manifestation is that the knowledge required by lots of product design has changed from
single-disciplinary to multi-disciplinary, and the useable design knowledge stores with different
vendors. This trend has led to more general knowledge representation models and a significant
increase in the size of design knowledge bases. The efficiency of FKI algorithms, as the guarantee
for their effective execution in large-scale knowledge bases, has naturally become an important
research direction.

Because the FKI problem shares many similarities with the graph search problem in essence,
graph theory plays a pivotal role in the computerization of the FKI process.Helm and Shea [5]
introduced object-oriented graph grammars to the traditional Function-Behavior-Structure (FBS)
conceptual design model toimprove the representability and computer comprehensibility of FKI
processes. For a particular FKI task of planar N-bar mechanisms design with rotary, prismatic, and
pin-in-slot joints, Huang and Campbell [6]explicitly represented the planar topology of the
mechanism as a graph to enumerate all possible topologies of the mechanism with any
combination of the three joints. Miinzer [7] proposed a graph-based and object-oriented
representation of functional units. According to this representation, they provided a general and

automated FKI approach. Herber et al. [8] and Short et al. [9] further improved the enumeration
capability of graph-based FKI approach through a tree searching algorithm, and achieved
complete coverage of the solution space. Most of the above work adopted the top-down FKI
method. Here, Top-down means if a function is too complex to be matched directly by a functional
unit, the original function is disintegrated into sub-functions with decreased complexity or
granularity. The sub-functions can be further divided into sub-sub-functions when necessary,
andall these functions form a tree with the original function as the root. After the sub-functions
represented by the leaf nodes are successfully matched, backtracking is carried out along the
decomposition path to synthesize the design scheme of the root function. Commonly, such work
builds on FBS design model [1] and flow-based input/output representation [2].

Chen and Xie[10,11] proposed a more flexible keyword-based representation of input/output,
and reformulated the FKI process as a multi-source path searching problem. They also proposed
an automated algorithm to generate functional design schemes by generating chain-shaped
functional unit collections. The searching algorithm was extended to generate a more
complexbranch-chain-shaped structure through the introduction of the auxiliary functional unit
chain and incomplete matching [12]. In these works, the FKI problem is solved with the
bottom-up method, which eliminates the explicit function decomposition process and searches the
suitable functional units purely by their inputs and outputs. For a complex function, each search
iteration can only complete part of the design, and after multiple iterations, the design scheme of
the full requirements can be finally obtained. Compared with the top-down method, bottom-up
method pays more attention to the complexity of the function unit structure itself rather than the
granularity, and it has higher probability to obtain more flexible and creative design schemes. The
algorithm proposed in this paper belongs to bottom-up category.

However, the basic idea of most existing functional unit searching algorithmsis traversal based,
whether they are top-down or bottom-up. These algorithms can perform quite well with small
number of functional units, and they can find the optimal solution due to their enumeration nature.
With the increasing scale of knowledge bases, these algorithms are prone to have combinatorial
explosion problems, i.e., they cannot find a solution within afeasible time. Tosolvethisproblem,
Zhang et al. [13] proposed a presentation method of granular information in knowledge graphs,
which integrated graph reasoning technology while retaining the knowledge layering mechanism
and improved the algorithm search efficiencyfrom the perspective of optimizing the knowledge
storage structure. To make full use of distributed computing resources and improve the algorithm
efficiency, Chen [14,15] distributed the computing load to multiple processors for parallel
searching. As these methods do not change the ergodic nature of the searching algorithms, the
combinatorial explosion problem has not been eradicated.

Reinforcement learning(RL) achieves competitive performance in many large-scale and
imperfect-information games, such as Star craft [16], DOTA [17], Mahjong [18], and DouDizhu
[19,20], yet it has rarely been tried in FKI [21,22]. One contribution of this work is to bring RL to
FKI tasksto bring some possible, active, and new development directions.

In this paper, a functional knowledge integration framework based on RL is proposed.The core
of this framework is the functional unit chain generation algorithm called the Deep Monte Carlo
Search (DMCS). The input of DMCS is the semantic description of the new product’s target
function requirements, and the output is the functional unit chain describing the design scheme
(defined in Section 3.4).Based on the characteristics of RL, the FKI process in DMCS is

essentially a sequential reasoning process.Compared with the traditional searching process, the
optimal solution can be obtained without traversing the solution space, thus avoiding the
combinatorial explosion problem. At the same time, the reasoning speed only depends on the
length of the reasoning path and is insensitive to the size of the knowledge base, then DMCS can
maintain real-time search even on large-scale knowledge bases.

The structure of the paper is as follows. In Section 2, the models used in FKI are formally
described. Section 3 explains the functional unit chain generation algorithm. In Section 4, the
experiment setup and results are given in detail. Section 5 concludes the paper and lists future

work.

2 Model Description

FKI is essentially a design search problem that takes place in the functional knowledge base.
Therefore, the construction of KB is provided before the formal description of the FKI problem.

2.1 Representation of Functional Knowledge Graph

Since the relationship among functional knowledge units in KB can be modeled as a planar graph
structure, it is very nature to introduce the concept of knowledge graph to the FKI tasks. We name
this knowledge base the functional knowledge graph (FKG). This graph database structure is
suitable for the subsequent knowledge reasoning process [13].

FKG is represented by a directed graphG (V, E), whereV is the set of nodesinGand E is the set
of edges.Nodev; € V represents a functional unit, and edge e;; € E denotes the matching
relationship between v;and v; Knowledge in FKG is expressed as triples in the form of
(functional unit, matching relation, functional unit). For example, FU; - FU; indicates that the
output of the functional unit FU;is matched by the input ofFU;. FU; is called the predecessor of
FUj,and FU; is called the successor of FU;.To improve the convergence of the searching
algorithm (see in Section 3.2.2) and measure the optimality of the resulting path (see in Section
2.4), the number of unmatched inputs and outputs between adjacent nodes is further added to the

matching relationship as an important attribute value, represented as a label on the edge.For

0
example,FU; = FU,means that FU;and FU,match completely.

2.2 Representation of Functional Unit

The structure of the functional unit ontology is shown in Table 1, which contains seven attributes.
ID is the unique identifier of the functional unit in the FKG. Input and Output represent the input
and output of a functional unit, and they describethe basic contents of a product function. Prior
and Next reflect the position(or adjacency) relationship of functional units in the FKG. The entries
in Prior and Next are the predecessors and successors of the current functional unit

respectively.Category refers to the category of the function provided by the functional unit,

including the transformation function, support function, storage function, and incentive function
[23]. Carrier means the physical or technical prototype to implement the function of the
functional unit in the real world. Among them, Input and Output are of the most importance, and
the Category and Carrier will not be covered further since they are reserved for later structure

design work.

Table 1
The construction of the functional unit ontology.

Attribute ID Input Output Prior Next Category Carrier

Type Int Set Set Set Set String Set

Table2
Representation of input and output.
Input/Output Type Format
Core word Int Bucket
Keywords
Modifier Set of int {Bucket,...}
Features Set of tuple {(Name,Range,Unit),...}

2.2.1 Representation of Input/Output

The keyword-based representation is chosen to describe the input/output of functional units.
Compared with the traditional flow-based representation, this method is more concise and flexible.
Without the limitation to material flow, energy flow and information flow, the input/output of
functional units can be distinguished accurately. Keyword-based representation is promising to
representinterdisciplinary function design knowledge.

AFU can have a certain number of inputs and outputs, each of which is described by keywords
and features, as shown in Table 2. The keywords adopt the form of “modifier + core word”, and
there is only one core word and several modifiers for each keyword. The core word is a word or
phrase representing an object, and the modifier is a word or phrase providingadditionalsemantic
information to the core word. For example, for the input “fresh, clean + flowing water”, “flowing
water” is the core word, and “fresh, clean’are the modifiers. The features adopt the form of “name
+ range + unit” to provide specific constraint information, e.g., “voltage + [220] + V” can be a
feature of the input “electricity”, where “voltage” is the feature name, “[220]” gives the

valuerange of this physical variable, and “V” is the corresponding unit of the feature of voltage.

2.2.2 Synonym Management of Keywords

Eachwordmayhave synonyms, soitis common todescribethesame input/output ofanFUusing

different keywords, which leads to misjudgment when doing the automatic matching. For example,
the keywords “electricity supply” and “electric power supply” are synonyms and are different
expressions of the same input. However, these two keywords cannot be matched if exact same
words are required.

To solve the problem of diverse expression, a bucket-based synonym management mechanism
is proposed to construct the keyword dictionary in which a bucket is a cluster that stores synonyms
together. The bucket management algorithm works in the following steps.

g ———— (1) When the first word is

Inputl: | Modifier: (water) inserted into the synonym

dictionary, a bucket is created. The

Features: None

bucket is assigned a tag as its

Input2: | Modifier: (velocity) Bucket

unique identifier, and the first

potential

Core word: regulation signal . .
’ . v Tag word into the bucket is the default
Features: {(voltage, [3.0,5.0,v)} 94 ‘Y——H~ | . .
potential energy: value of this tag.
Outputl: | Modifier: (water) energy of position | SYNONym

(2) When a new word is added
to the dictionary, it is up to the

Core word: kinetic energy

Features: {(flow rate, [5.0,20.0], m/s)}
user to decide whether to assign it

Prior: (FU15, FU22, FU133, FU140)
Next: (FU37, FU155) to one of the existing top-n
Carrier: | (control gate, drainage gate) recommended buckets or create a

Figure 2. Example of function unit. new bucket for it, depending on its
meaning. The recommendation is
given based on the similarity between this new word and the tags of each bucket.

After establishing the keyword dictionary, when describing input/output, words in the same
bucket correspond to the same tag. The use of buckets can avoid the occurrence of diverse
expressions effectively. In particular, which bucket should a polysemy belongs to is determined by
the designer according to the context. The example above is used for illustration again. If there is a
bucket of “electricity supply, electric power supply” with “electricity supply” as its tag,then no
matter whether the designer inputs the core word “electricity supply” or “electric power supply”,
“electricity supply” will be stored actually in the KB after transformation.

Fig. 2 gives an example of a functional unit built according to the above rules.

2.3 Rules for Matching

There are two kinds of matching relationship considered in this paper, one is the matching
between an input and an output, and the other is the functional units matching. The former means
that an input and an output are regarded as equivalent to some extent. The latter means that these
two functional units can be integrated to form a new bigger functional unit. Input/Output matching
is the foundation for matching between corresponding functional units. The specific rules for
matching are as follows.

Rules for Input/Output Matching.For a pair of input and output, they match if their core words
are in the same bucket, the modifiers and features of the output contain those of the input. In
particular, if a feature appears in both the input and output, the range of its value in input should
cover that in output. Fig. 3 shows an example of input-output matching.

Rules for Functional UnitsMatching.For functional units FU; and FU;, if at least one output of

FU; matches at least one input of FU;, FU;is matchedbyFU;.

2.4 Task of FKI

FKI is the task of searching for feasible solutions thatcan achieve the target function by exploring
the knowledge base. For the convenience of algorithm description, the target function is abstracted

Output: Modifier: (visible, sun)
Core word: light

Features: {(energy density, [40,100], KW/m?2),
(illuminance, [200,250], Ix)}

\Comtain

Intput: Modifier: (visible) \

Core word: light

Features: {(illuminance, [150,300], Ix)}

Fig.3. A matching pair of input and output.

Knowledge Base

St Ed

(a)
l Specify
st O\, o ° 0| Ed
l Iteration N (b)
1\;) — s o
st T~ Ed
\’ |
: ()
0 © e o — —
Functional P Unmatched Unmatched Mn,mh Match
N Input/Output relationship relationship
unit output input
between between
functional input and
units output

Fig. 4. The process of FKI task.

into two virtual nodes Stand Ed that do not really exist in FKG. Node St only has the Output
corresponding to the target inputs, and conversely node Ed only has the Imput attribute
corresponding to the target output.Then, an FKltask can be reformulated as searching for an
optimal path in FKG from node St to Ed under certain constraints as illustrated in Fig. 4(a).
Due to the complexity of the function structure, the exceptedresult of FKI is often a composite
path with both series and parallel structures, as shown in Fig. 4(c), which is difficult to be

obtained by a single search. A common solution is to decompose the FKI task into smaller
subtasks by using the ideology of dynamic programming [24]. In particular, the success condition
of each search is relaxed to find an optimal path from node St,, to Ed,, where unmatched inputs
and outputs are allowed, as shown in Fig. 4(b). The nodes St,andEd, denotes the current target
outputandinput in iteration n. The inputs and outputs unmatched in search iteration n-1, which
aremarked with green and red respectively in Fig. 4(b), are taken as the target outputs/inputs for
search iterationn. The number of unmatched inputs and outputs is recalculated after merging the
resulting paths of iterationn-/ and iteration n. Theiteration continues until the number of
unmatched inputs and outputs in the resulting path is 0, as shown in Fig. 4(c), and then, the whole
FKI task is completed.

Therefore, the FKI problem is an iterative problem. Since improving the efficiency of a FKI
algorithm is the main objective of this paper, and the efficiency of iterative problem largely
depends on the total number of iterations and the speed of each iteration, a greedy strategy is
introduced to decrease the number of unmatched inputs and outputs in the path. In other words,
the total number of unmatched inputs and outputs is the optimizationobjective for the result. The
smaller this number, the better. This optimization object is in line with FKI's original optimality
criterion of producing solutions as simple as possible. The efficiency of each iteration is another
factor affecting the efficiency of the FKI algorithm. The searching algorithm for each iteration is
called the Functional Unit Chain Generation algorithm, since it generates a series chain [24].

In general, the objective of an FKI is to find the optimal paths from node St to Ed in FKG.
The basic idea is to decompose an FKI into subtasks and find the optimal chain for each subtask
using the Functional Unit Chain Generation algorithm.As thetotal iterative framework (refer to
Section 4.1 for more details) issimple,this paper focuses on the functional unit chain generation
algorithm.For a better description, the number of unmatched inputs and outputs between adjacent
functional units is called the local redundancy number, and that in one path is the global

redundancy number, respectively.

3 Functional Unit Chain Generation
algorithm

3.1 Why RL

The process of RL belongs to a Markov Decision Process (MDP), as shown in Fig. 5. In any time
step t, the agent performs the current optimal action A, under the observed environment state S,
according to the policy . Then the action transforms the environment state into S, ;. Depending
on the specific content of the transformation, the environment gives the agent different feedback,
namely reward R,,;. The agent adjusts its policy based on the reward, and a simple way is to
perform the same action thatearned the largest rewardsbefore when facing the same state. The
purpose of this adjustmentor the so-called learning is to maximize the cumulative rewards (return
U,) that may obtain in thefollowing time steps. Through such continuousinteractions with the
environment, the agent gradually reinforces its understanding of the environmental rules, such as
the mapping relationship of (S;, A;, S¢x1) = Upyq.

The reason to adopt RL to solve the FKI problem is for effectiveness and efficiency.
EffectivenessFor a general heuristic searching algorithm such as A*, whether it has good
performance in a large graph database depends heavily on the heuristic function that measures the
position relationship between the current node and the target node to guide the search direction.
However, because of the asymmetric mapping between the inputs and outputs of the functional

" Agent
state reward action
St Rt At
Rt+1
SHI
Fig. 5. The process of RL.

units, the position relationship between the non-adjacent nodes can hardly be measured in the FKI
problem. Although the RL method is heuristic-based, it is essentially a trial-and-error learning
method. Its policy optimization depends on the experience obtained from the agent and
environment interaction, not a specific heuristic function.The lack of a complete position
relationship between nodes causes the agent to get less feedback from the environment, which
only delays the algorithm convergence and brings more training iterations. However, it has little
effect on the algorithm's effectiveness.

Efficiency The RL method is more efficient than traditional traversal searching algorithms without
considering the training time. It can obtain the approximate optimal path by sequential decision
with no need to traverse the solution space, and it can decrease the effect of the FKG size on the

algorithm efficiency.

3.2 Deep Monte Carlo Searching

The method proposed in this paper is an RL search algorithm based on Deep Monte Carlo (DMC),
called Deep Monte Carlo Searching (DMCS).Referring to the description of the FKI task in
Section 2.4, the FKG G(V,E)is taken as the environment, and V constitutes theaction
spaceA.The episode of FKI is defined as follows.

Episode In the initial stage, nodes St and Ed (i.e.,thenodesintroducedtorepresent target
functional requirements) are first specified or randomly generated (during network training).
Starting from St, the agent selects and performs the action a, € Aat each time step t,
corresponding to moving from the current node to the next node. If the agent reaches the node Ed
within the specified maximum search length, thesearch is successful, and the action trajectory of
the agent is the desired path; otherwise, the search is a failure. In this way, the search process
changesto a sequential decision process.

The action selected at each time step in the episode depends on the policym. Usually, in
off-policy RL, the greedy strategy argmax,Q(s,a) is adopted as the target policy m, (the
policy used for algorithm prediction and evaluation). Underr,, the action producing the largest
Q-value among all state-action pairs (s,a) is selected as the decision result. It is clear that the
optimal decision can be made as long as the Q-value of all actions in each state is known. Q-value
is actually the return U mentioned before. Assuming that the value ofUcan be calculated by an

unknown function called Q-function, then how to obtain this Q-function is the primary
consideration of RL methods. Actually, this is the selection of training methods.

In this paper, the training method is the Every-visit DMC [20], and its overall stepscan be
summarized in the following cycle.

(1) Perform a complete episode based on the behavioral policy ;. This policy is used only
during algorithm training.

(2) Calculate the return U of each state-action pair (s,a) in the episode as the Q-value of the
network.

(3) Update the network.

In detail, DMCuses Q-network as the approximation of the Q-function and trains it through
Monte Carlo (MC) method. Q-network is a neural network to predicate Q-value. It receives the
current observable environment state as input and outputs the Q-values of all candidate
actions.MC method is a stochastic simulation method based on probability and statistics theory,
and it is also a frequently-used solution in RL. Shortcomings of the MC method are known as
being only effective for complete episodes and its low convergence due to high variance. FKI is an
episodic-based task, i.e., each search process is independent, then MC method can work well
under this situation. At the same time, as MC can be parallelized conveniently, it can generate
multiple samples per second, and it is very efficient in wall-clock time. According to the research
results of Zha et al. [20], the benefits brought by DMC in scalability are far higher than the
adverse effects of high variance on algorithm convergence. In addition, FKI is a sparse reward
task, i.e., the agent needs to go through a long list of states without feedback, and the only time
step that produces a non-zero reward is at the end of the search. For the Temporal-Difference
Learning (TD) algorithm, the Q-value in the current state needs to be estimated until the value in
the next state is close to its true value [25,26]. Therefore, the convergence speed will be slowed
down. However, DMC only calculates the real returns of each state after the end of the episode, so
its convergence is not affected by the length of the episode. In conclusion, the DMC method is
well suited for the FKI task.

3.2.1 Interval Epsilon Greedy Policy

Exploration-exploitation trade-off is the major consideration when generating behavior policy.
Exploitation means that the agent always performs the optimal action based on the observed
environment state, while the agent is allowed to try non-optimal action for more extensive
interaction with the environment in exploration. To achieve greater long-term returns, short-term
returns have to be sacrificed sometimes by giving up a certain number of exploitations in favor of
exploration. The e-greedy policy is defined in Eq.(1).

4 :{argmaxa Q(st,a) with prob (l—g) M

random action with prob ¢

where ¢ is a scalar between 0 and 1. In this policy, the agent exploits with probability 1 — ¢ and
performs random exploration with probability €.

e-greedy is one of the most basic and commonly used policies in RL.To improve the network
performance, an interval e-greedy is proposed, in which the value of echanges dynamically based
on the number of iterations, as shown in Eq.(2).

%10

1-0.1>{ﬂJ, 1< epi<epi,,
€Plnid

0.01 , epi,; <epi<epi..

@

Whereepidenotes the current number of episodes; epi,, ., 1S the maximum number of thetraining
episodes, andepi ;4 is half the number of epi,,,, .The main idea of the interval &-greedy policy is
to divide the whole training process into two parts according to the number of training episodes.
The agent is encouraged to explore with higher ¢ in the first half and exploit with lower ¢ in the
second half. This simple method not only makes the global and local vision of the agent more
balancedbut also makes the whole learning process smoother. Specifically, in this paper, the total
iteration space is divided equally into two parent intervals. The former is further divided equally
into ten subintervals, and the corresponding & decreases uniformly from 1 to 0.1, The gin
thelatterpart is fixed to 0.01.

3.2.2Rewards

The Rewards are the feedback from the environment for the transition of the observable states, and
they can guide the agent's actions. In this paper, the rewards consist of four components: process,
success, failure, and death reward.

(1) Success reward

The agent receives the success reward if it completes a successful search. It is an integer between
0 and 10 to measure the optimality of the resulting path. When the redundancy number of the
resulting path is 0, the agent gets the maximum reward of 10. When the redundancy number is
greater than or equal to 10, the path has no learning significance, and the agent gets the minimum
reward of 0. The existence of this reward is to guide the agent to find successful paths with as few
redundancies as possible. The successreward is calculated by Eq.(3).

=max(0,10 - redn,) 3

rsucc

where redngdenotes the global redundancy number.

(2) Process reward

In the task of FKI, because it is hard to measure the distance between any node and the target node
Edin FKG, the transition of any two intermediate states cannot be evaluated by the change of their
distance from Ed.

To further explain, assumee, and e, are any two connected entities in the knowledge graph,
and the semantic information they carry in the form of word vectors is denoted as sem, and
semy,, respectively. For the general semantic-based knowledge graph reasoning tasks, {e,, ey}
and {sem,,sem;,} are one-to-one mappings, as shown in Fig.6(a). In this case, the distance
between e, and e, can be approximated as the distance between sem, and sem;. For
example, Liu et al. [27] proposed a dynamic reward mechanism, which correlated the reward with
the cosine similarity between the current (entity, relation) pair and the target (entity, relation) pair.
Their mechanism effectively alleviated the low convergence of the Actor-Critic network-based
reasoning algorithm caused by the sparse reward. However, for the FKI task, a functional unit
usually has multiple inputs and outputs, that is, {eq,e,} and {{semg,)},{sem;,)}} are

one-to-one mapping, as shown in Fig.6(b). Since the mappings between {sem,(} and

{semy,(;y}are not clear, it’s hard to measure the distance between e, and e}, precisely by the
word vector operation.

Since no suitable measuring method is available, the agent only gets non-zero rewards at the
end of the search. In other words, the value of theprocess reward is always zero.

Path

(a)

D

(b)

|:| : Node O : Semantic information

Fig. 6. The semantic mapping relationship between connected nodes in general inference task (a)
and FKI (b).

(3) Failure reward

To go against the convergence reduction caused by the unobservable distance, a health-oriented
hypothesis is proposed to explore the potential connections between the current path and the target
node from another perspective.

Assume that the description of the functional requirements given by designers are accurate
enough, which is normally true. It can be seen that the closer the functional unit chosen is to the
target input, i.e., a smaller redundancy number of the current path, the more consistent the chosen
FU is with the designer's idea. Then, we assert that the current path is more likely to lead to the
target output, i.e., healthier.

Based on this hypothesis, the failure reward, a floating number from 0 to 1, is proposed to
measure the health of the resulting path if the agent encounters a search failure. The failure reward
can encourage the agent to explore a healthier path and is defined similarly to the success reward
by Eq.(4).

redn,
Ffail = max(0,1— 0) 4)
It can be seen that when the path deviates seriously from the target functional requirement, the

redundancy number will be relatively large, and according to the experiments, this number is
greater than or equal to 10. It is important to note that health cannot reflect the distance between
the current node and the target node.For example, there is a target node Ed that the agent reached
at time step 20, and coincidentally, the redundancy number of the resulting path is 0 at both time
step 1 and time step 19. The path got the same health degree at these two time steps, but the
distance between the agent and Ed at time step 19 is significantly closer than that at time step 1.
Therefore, the health is a kind of orientation information which is not strong enough to be used as
a parameter of process reward.

(4) Death reward There is a special termination state not mentioned in the above episode

definition, i.e., the agent stops searching because there is no legal next node to go. This state is
also a search failure, but as it is similar to the situation that the agent reaches a dead corner in the
maze problem which should be avoided, we distinguish this reward from the failure reward and
call it the death reward. The value of the death reward is 0.

Generally speaking, the rewards of the closer time step is more reliable thanthose of the far
away time steps. Therefore, the return U is usually defined as the weighted sum of the rewards
shown in Eq.(4).

T
Uiso.r = 27/th “4)
t=0

where y € [0,1]represents the discount factor, the smaller this factor, the more myopic of agents.
In this paper, yis set to 1, because the FKI task produces non-zero rewards only at the last time
step, and the early node selection is also very important for the final reward generation.

3.2.3Input Features of Q-Network

The input features of the Q-networkare the concatenated representation of state and action,
including the current node, the adjacency node, the local redundancy number between the current
node and its successors, the action trajectory, the global redundancy number, and the target
functional requirements.

Modifier Core word Except that the two redundancy numbersare

(V',l) i expressed in integer directly, other FU relevant

e O . OO @ states or actionsare represented by the/nput and

Input/ Q00 . @O O Output, which are encoded as an x X y matrix

Output

) as shown in Fig.7.xis the maximum number of

inputsoroutputs, and y denotesthe maximal

000 -~ 00 O

@ :wordvector O Zero vector matrix corresponds to one input/output, each

number of keywords allowed. Each row in the

Figure 7. Example of encoding matrix of ~ ¢lement in column 1 to column (y —1)
input and output. corresponds to a modifier, and the last column
corresponds to the core word. For each element
in the matrix, if the corresponding keyword exists, its value is equaltothe word vector of the
keyword; otherwise, it is the zero vector of the same dimension. To reduce the matrix size, an
output is represented by the average value of the corresponding word vectors of all keywords
when encoding action trajectory.
For theimplementation, the values of x and y are set as 12 and 6, respectively.
ChineseEmbedding, an embedding dateset covers more than 12 million Chinese words and
phrases released by Tencent Al Lab, is used to embed a keyword into a 200-dimensional vector.

The complete input features are summarized in Table 3.

3.2.4 Architecture of Q-Network & Training algorithm

In order to ensure the efficiency of episode generation, the architecture of the Q-network is

javascript:;�
javascript:;�

designed as simple as possible, which consists of three components, i.e.,Conv, LSTM and MLP, as
shown in Fig.8. The Conv part contains a convolution kernel with 200 channels and 12X 6 size,
and each convolution corresponds to a feature extraction of an input or output. The LSTM part is
responsible for extracting sequential information in trajectory features, and it adopts theLSTM

Conv MLP
Inputs of next node
Outputs of next node
Target inputs i (> | Conv2D ‘ — H‘IEE%Q’;\‘ ——
Target outputs i One kernel
Outputs of current node i [;v[;t[;w iif;]
(200, 5*12, 6)
(1, 60+200+2)
| Outputs of the first recent node l
: =14 [LSTM }
|
Qutputs of the fifth recent node One layer with f Repeat 7x
[hidden size
(5, 12*200) 200 Hidden size
LSTM B

Local redundancy number D v'v

(1,2)
Redundancy number I:]

(L.1) (1,1)
Fig. 8. Architecture of Q-Network.

network with a single layer, single direction, and a 200 hidden size. The MLP part contains 7 fully
connected layers with a hidden size of 512, and its output is a vector of size N X 1, where
Nrepresents the number of legal candidate actions or next nodes in the current state. For each
inference of the network, the FU-relevant features are extracted by Conv and LSTM, then
concatenated with the redundancy features to form a comprehensive feature. Based on these,MLP
predicted the final Q-value.

A complete training algorithm description is shown in Fig.9. It follows the overall steps of
Every-visit DMC and uses the Mean Square Error (MSE) as the loss function.

4Experiments

4.1 Experimental Setup

Most of the experiments in the literatureinclude only the effectiveness study of the algorithm
[8,14,28]. They usually useone or a few specific real/well-designed design cases, including target
functional requirements and known optimal paths, to demonstrate the algorithm execution details
and validate the effectiveness. Algorithmperformance analysis using a large number of design
casesis not considered. Currently, there are not enoughreal design cases available, and the
scaleoftheKBs is not large. What’s more, it is hard to integrate these independent small
open-source Knowledge bases because of the different representations and storage structures of

FUs in each KB. Therefore, there are two dataset-level challenges for performance study.

(1) The scale of the existing knowledge bases is small, reflected both in the small number of
functional units (size) and the small mean degree of the functional units (complexity). It is noteasy
to compare the algorithm performance by the executing results of FKI tasks in such knowledge
bases.

(2) There are few real design cases available in the existing knowledge base for testing the
performance of the algorithms, so the experimental results have chanciness.

Table 3
Input features of Q-Network.

Feature Size

Inputs matrix of the next node 200*12*6
Action

Outputs matrix of the next node 200*12*6

Matrix of target inputs 200*12*6

Matrix of target outputs 200*12%6

Outputs matrix of the current node 200*12*6

State

Concatenated outputs matrix of the most recent 5 nodes 5*(12*200)

Local redundancy number 1

Redundancy number 1

1: Input: Leaming rate i, exploration hyperparameter €, maximum buffer size buf,
experience playback threshold rep,j eshotd. maximum episode number epi,, .,

2: Initialize Q-networks @, buffer B, temp buffer D, environment Env
3: for episode=1, 2.3, ... €Piya, do

4 fort=1.2,3 ..Tdo & Generate an episode

5: Observe s,

6: A « Generate_Legal_Actions (5;)

= s {argmaxam Q(s;,a), with prob(1 —)
random action with probe
8: Perform a;, observe reward r;
9: Add {s,, a,, r,} to temp buffer D
10: endfor
11: fort=T-1,T-2,..1do o Obtain cumulative reward
12: Ty ¢ Ty + Tpyy and update r, in D
13: Move {5, a,, 1} from D to B
14: endfor

15: ifB.size > rePihroshold then © Optimize network
16: Sample a batch of {s,, a,, r;} from B

17 Update @ with MSE loss and leaming rate

18: endil

19: ifB.size > buf then © Maintaining buf fer

20: Delete the earliest experience in B until B. size < buf
21: endif
22: end for

Fig. 9. Training algorithm description of DMCS.

Initializes the current path Path = [].
input/output recheck set Recheck = [],

maximum input/output number M = 12,

target inputs/outputs IPS/OPS = []

v

Select the start node A at random and
append it to Path. Let the initial end

node B = A

Y

Select a maximum step 0 < S < 7 at random

The length of current path s < S and
exist the legal next node of B that not in Path

Take one of the legal next nodes as the new 53

and append it to Path

'

Add all inputs and outputs of A and B to Recheck.
Denote the set of their inputs/outputs as IpS; /0pSy

'

Randomly select 0 < py < 2 functional units,
denoting the reduced set of their inputs and Recheck as ips,.
Add ips, to Recheck

t

Randomly select p; functional units,
denoting the reduced set of their outputs and Recheck as ops,.
Add opss to Recheck

'

Randomly select more than half of the ips; /op.91 to add to
IPS/OPS

'

Randomly select any number of the ipss /0p32 to add to
IPS/OPS, but make sure the length of [PS/OPS < M

Y
/ IPS/OPS /

End

Fig. 10. The requirement generation algorithm.

4.1.1Requirement Generation Algorithm

There are two measures to evaluate the algorithm performance, one is the absolute performance,
and the other is the relative performance. The absolute performance is obtained by comparing the
resulting path with the optimal path, while the relative performance is measured by comparing the
resulting paths obtained from different algorithms. The advantage of the relative performance is
that the searching algorithms can be compared using generated target requirements instead of
real-world cases.For challenge (2) just mentioned, the performance study in the paper is
implemented by calculating the relative performance directly, rather than the traditional method of
calculating the real performance first and then comparing the results.Thus, a requirement
generation algorithm is provided to produce feasible target functional requirements randomly.
Requirement generation is also the first step of FKI scenario generation. Feasiblemeans that the
requirements can be satisfied by the existing functional units in the knowledge base, i.e., there are
paths from node SttoEd.

Since the target requirements should be satisfied by the existing functional units, the target
inputs/outputs must be a recombination of the existinginputs/outputs. The core idea of the
requirement generation algorithm is to randomly select functional units from the FKG and
combine their inputs/outputs for the new target functional requirement. The main steps of the
algorithm are summarized as below.

(1) Randomly select a node in the FKG as the start node A. Randomly generate a path starting
from A with length z,a random integer, and use the last node on the path as the end node B. The
inputs of Aare put into set ips;, and the outputs of B are inserted into setops;.

(2) To enhance the complexity of thefunction structure, the inputs/outputs of the start/end node
need to be expanded. Randomly choosep functional unitsfrom the FKG, andput their inputs to set
ips,. Similarly, randomly choosep functional units again from the FKG, andput their outputs to set
ops,. pis a random number.

(3) Let x be the maximal number of inputs/outputs of a functional unit andy be a random
number. Choose yelements in ips;and no more than x — yelements in ips, to form the target
input set. To maintain the basic characteristics of A, y should be larger than half of the size of
ips;. At the same time, to construct the target output set using the same method.

In this paper, 0<z<7, 0<p<2 1<x<12 It can be seen that according to the above
algorithm, the starting point A and ending point Bmustbeconnected, and they can be used as
Stand Ed for a design requirement. Fig. 10shows the complete algorithm, including thepath loop
detection, inputs and outputs de-duplication, etc.

4.1.2 FKGExpansion

Tohandle challenge (1), amanual-automatic hybrid method is used to expand the existing
functional knowledge base, namely original FKG (FKGg). In this part, the knowledge base
provided by Chen [24] is taken as FKGg. It contains59 FUs and 21 real cases, and the expansion
shouldmeet the followingtwo requirements.

(1) Increase the size and complexity ofFKGy,.

(2) It should be guaranteed that the generation of functional units does not affect the original

javascript:;�

real cases. It is not to separate the original functional units involved in the real cases from new
generated functional units directly, as this will hinder the complexity of the design case from
increasing with the expansion of the knowledge base.

Since a FU can be regarded as an implementation of the corresponding target functional
requirement, i.e., a FUis corresponding to a functional requirement, the requirement generation
algorithm provided in Section 4.1.1can generateFUs. In detail, a new FU can be generated by
expanding existing inputs and outputs to any existing FU. In this case, the inputs and outputs of
the new FU are from the existing FUs, so its degree is high, i.e., the above requirement (1) is
satisfied.

One shortcoming of this method is that the new generated FUs are lack of logic and are not
suitable as a part of a real case. To satisfy requirement (2), a new independent knowledge base is
further built. The main steps of the whole expansion are as below.

(1) A new knowledge base FKG¢is built, which contains 59 new manually collected FUs.
FKGy and FKG¢ are totally independent, i.e., the inputs/outputs of any two functional units from
FKGy and FKG¢ are not matched.

(2) Generate three new functional units based on each functional unit in FKG¢, so the size of
FKGcincreases by triple.

(3) Generate a new functional unit based on each functional unit in FKG as illustrated in Fig.
11.Denote the FU taken fromFKGg as the basic FU, and the new FU after expansion as the
mutation FU. During expansion, the inputs of the mutation FU is the same as those of the basic FU,
and its outputs is expanded by outputs selected randomly from FKG.. A unidirectional
connection FKGqy — FKGcis established.

Add

]
I
I
I
I
I
Expans]on: outputs
| [from FKG,
I,
I
I
I

g Mutation
e

I
I
I
l
|
I
Same| |
I
U
I
I
I
I

Connect

FKG.
) Inputs/Outputs from FKG, =, :Outputsfrom FKG,

Fig.11. Special way of functional unit generation in FKG expansion.

A simple proof that mutation FUsdo not affect the original optimal paths of the real cases is as
follows. Taking any node and its adjacent nodes in the optimal path as an example, since the
inputs of the mutation FU is unchanged compared with the basic FU, its left adjacent node is
unchanged. The output of the mutation FU increases, and it is connected to FKG(. Because of the
nonexistence of connection FKG; = FKG, the extra outputs can not lead to end node Ed, so
the right adjacent node remains the same. Compared with the mutation FU, the basic FU is always
selected as a better node because of lower local redundancy, so the current node is unchanged. In
conclusion, any node and its adjacent nodes in the optimal path change nothing after expansion,
and the relationship is established between the cases and these two knowledge bases.

(4) The final unified knowledge base, namelyFKG is obtained by merging FKGyandFKGg.

The scale comparison of knowledge base before and after expansion is shown in Table 4. The
experiments in the following sections are conducted basedon FKG.

Table 4
The scale comparison of FKG before and after expansion.

Function units Triples(numbe Complexity(mea Cases(nu

(number) r) n degree) mber)
FKGq 59 52 1.76 21
FKG 354 6066 34.27 21

254 —— Recon_loss —— Mean_reward_100
Moving avg Moving avg

2.0 1

Recon_loss
I
w
|
Mean_reward_100

=
o
L

0.5 11

500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Episode/500 Episode/500

o

Fig.12. Loss (a) and mean (b) reward w.r.t. the number of training episodes where the current
number of episodes is divided by 500 and the mean reward is calculated base on the most recently
100 episodes.

4.2 Implementation Details & Training Condition

DMCS algorithm is implemented based on Pytorch deep learning framework, ReLU activation
function for MLP layers, Adam optimizer, and MSE loss function. The training completes in three
days on a server with 20 processors of the 12th Gen Intel(R) Core(TM) i7-12700KF CPU @
3.61GHz and a NVIDIA GeForce RTX 3080 10GB GPU, and the convergence curve is shown in
Fig.12. The values of each hyperparameter are as follows: maximum search length L = 10,
learning rate ¢ = 5e — 7, maximum episode number epi,,,, = 1500000, batch size bat =
512, experience replay threshold rep; 4 ess01a = 1536,and maximum buffer size buf = 20000.

The losses throughout the training process is shown in Fig.12.(a). At the beginning of the
training, the policy is learned from scratch, so there is a short period of rapid decline in losses.
Then the agent enters the exploration period, and the policy is updated frequently, so the curve has
a large fluctuation and shows a reverse growth. With the continuous decrease of €, the policy
tends to be stable, and then the losses decline to convergence.

The rewards during the training process is shown in Fig.12.(b). Because of the interval epsilon
greedy policy, the rewards increased regionally as the € decreased regionally. The overall trend of
the rewards in each region is to rise first and then flatten out, indicating that the training in each
region is sufficient. Eventually, the rewards number converges at around 4.3.

Potential energy

of water Kinetic energy Rotational mechanical
Flowing river [Fu) o 5 of water FU energy NITH P
SE | L F———% o —(—()
15 @ | 34 37 10
Merge T
Velocity regulatlorJ 220V 380.\1. | 220.\/.
. signal FU electricity electricity | Fu electricity
)) L) Ed
Ed |C e, ?-—)| st : ﬁ;—»
Merge

Fig.13. Demonstration of FKI process in Case one. A complete description of these FUs is
available in the Appendix.

4.3 Effectiveness & Case Study

To verify the effectiveness of DMCS in solving the FKI problem, we executed DMCS on the 21
real design cases mentioned in Section 4.1.2, and the results are shown in Table 5. The results
show that DMCS successfully finds the optimal path in all cases and prove that DMCS can handle
the FKI problem.

To illustratechow DMCS works, the first case listed in Table 5 is chosen to demonstrate the
complete FKI process, including the iterative process of multiple functional unit chain generation.
Background Ina leisure center, there is a river flowing through.To achieve sustainable
development, a device is needed to accomplish the hydropower generation to support the electrical
appliances in the leisure center.

Target requirements According to the requirement of this product, the target input is “flowing
river” and the target output is “220V + electricity”.

Execution of DMCS

Iteration one Run DMCS with the target requirements. Path 1, the obtained optimal path, or to say,
the functional unit chain, is shown in the dashed box labeled “Iteration one” inFig. 13.In this path,
the input “velocity regulation signal’of FU34 isnot matched. So, the self-matching is
performed.Each unmatched input/output is checked to see if it can be matched by any other
existing input/output in the path. After self-matching, this input still cannot be matched. Since it is
the first iteration, no path merging operation is required, and the current path is the result of this
iteration.

Iteration twoAfter the first iteration, the target inputs/outputs of the following iteration are defined
as the unmatched outputs/inputs of the previous iteration by default. As the health-oriented
hypothesis mentioned, accurate target requirements are conducive to achieve a suitable path for
DMCS. At the same time, it is good to amend the existing design direction by the product
designers. Therefore, designers are allowed to add or remove the inputs/outputs from the default
target requirements. In this design case, the default target output is “velocity regulation signal”,
and there is no default target input, so “220V + electricity” is manually added to the target input
according to the correlation.

Run DMCS with the revised target requirements, and the optimal path (Path 2) is achieved as
shown in the box labeled “Iteration two” in Fig. 13. Since there is no unmatched input or output in

Path 2, the self-matching is passed.

Now there are two optimal paths, i.e., Path 1 and Path 2, and it is necessary to merge them. The
target input and output used in Iteration two connect with nodes FU34 and FU6 of Path 1 by
NodeFU22 in Path 2, and the relationship is shown with lines labeled Merge in Fig. 13. The
merged path is taken as the result of this iteration. More generally speaking, path merging is
performed between the path obtained from the previous iteration and the current path, denoted
path;_; and path; respectively. The target requirement is first updated, i.e., for the target
requirement of path;, if there are inputs or outputs that do not exist in path;_;, add them to the
corresponding target requirement of path;_;. And then, the matching relationship is updated, i.e.,
each node in path; excluding St and Ed is checked whether it matches any nodes in
path;_,or not. If so, this node is inserted to path;_;.

As there is no unmatched input or output in the current iteration path, the algorithm ends and
this path is taken as the final result.

During the process, all mentioned keywords are converted to the corresponding bucket tag by
default. In this case study,not too many features of the inputs/outputs areconsidered. For some
inputs/outputs with the same keywords but different features, part of their features are retained as
modifiers to be added to the keywords for discrimination. For example, the modifiers “220V”” and
“380V” in “220V + electricity” and “380V + electricity” are essentially preserved voltage
features.

To sum up, the overall framework of the proposed FKI method includes five parts, i.e., default
requirement determination, requirement modification, functional unit chain generation,

self-matching and merging. The flowchart is shown inFig. 14.

v

Initialize iteration f = 0 |

t=1t+1.
> target requirement determination, if { = 1:
default requirement determination and requirement modification, if ¢ > 1

Functional unit
chain

Redundancy number is zero

Self-matching

No operation, if { = 1;
merging, if { > 1

'

/ Resulting path of iteration ¢ /

Redundancy number is zero
Y
End

Fig.14. The overall framework of FKI.

Table5
Result of effectiveness study where the value of success and optimal metrics are bool.

Task Target Given Success | Optimal
0 0 1 0 0 0 0 0 1 0 0 0
1 St— FU15—> FU34— FU37— FU10— FU6—> Ed St— FU15—> FU34— FU37— FU10— FU6— Ed 1 1
2 0 1 0 0 0 1 2 0 1 0 0 0 1
2 St— FU39— FU5— FU17— FU38— FU23— FU28— Ed St— FU39— FU5— FU17— FU38— FU23— FU28— Ed 1 1
0 0 0 0
13 St— FU35— Ed St— FU35— Ed 1 1
2 0 1 0 2 0 1 0
20 St FU44—> FU52—> FUST— Ed St FU44—> FU52—> FU5T— Ed 1 1
21 St FU4S > Ed St FU4S > Ed 1 1
Mean - - 1.0 1.0
Table6
Performance comparison between algorithms.
Lower redn(Lower redn(wi Mean time Total time
Success(%) . Mean redn
%) thin 3)(%) (s) (s)
DMCS 90.40 74.56 92.92 6.13 0.02 22.33
DFS 17.50 - - 3.14 104.65 265814.17
DMCS(without
86.30 36.96 50.41 15.76 0.03 28.72
Tfail)

4.4 Performance & Ablation Study

To evaluate the performance of DMCS, the functional unit chain generation algorithm proposed
by Chen [24] is selected as the counterpart. Chen’s algorithm is DFS (depth-first-search)based and
referredto as DFS in this paper. In DFS, pruning is realized by memorization search, i.e., recording
the paths from the visited node to the endnode Ed. However, this approach often leads to memory
overflow during large-scale search tasks, even if only the optimal paths in different lengths are
recorded. In order to ensure that the algorithm can run under the experimental conditions, the
recorded content in each visited node is modified to be within a minimum step, or to say, if the
distance between a node and the current node is beyond this minimum step, there will be no
solution.

DMCS and DFS both run on 1000 target functional requirements generated randomly by the
algorithm mentioned in Section 4.1.1. For each run, since it is well known that the maximum
search length greatly affects the time efficiency of traversal algorithm, it’s set to 8 as short as
possible based on the possible lengths of the optimal paths, and the maximum search time is set to

300s, as ample as is acceptable. The experimental results are shown in Table 6. The performance

of these two algorithms is mainly compared from twoaspects.

Computational efficiencyThe computational efficiency of the algorithmsare reflected by three
metrics, i.e.,success, mean time and total time. Success denotes the probability that the algorithm
completes the search within the maximum search time and gives the optimal path successfully,
that is, the probability of successful search. Mean time denotes the mean searching time of the
successful searches. Total time denotes the total time taken by the algorithm to complete all the
search tasks.

Results quality The quality comparison of the search results of the two algorithms is also
reflected by three metrics, i.e.,lower redn, lower redn (within 3) and mean redn. Lower redn
denotes the probability that the redundancy number of the optimal path obtained by DMCS is less
than or equal to that of the corresponding DFS solution.Here, the DFS solution refers to the path
with the minimum redundancy number found by DFS within the maximum search time, not
necessarily the optimal path. This metric is counted only when the DMCS reaches a successful
search. Lower redn (within 3) is defined on the basis of Jower redn, and it denotes the probability
that the redundancy number of the optimal path obtained by DMCS is less than or equal to the
redundancy number plus 3 using DFS. Mean redn denotes the average redundancy number of the
optimal paths obtained by DMCS or DFS solutions.

The experimental results are shown in Table 6. It is clear that DMCS only sacrifices a small
part of the resulting quality (doubledthe value of mean redn) in exchange for a much higher
computational efficiency than DFS (about 4 times the successincrease and 5,000 times the mean
time reduction). This result reveals the characteristics of these two algorithms. DMCS gets the
approximate optimal solution directly by inference, while DFS gets the real optimal solution by
traversing the search space. Therefore, it is foreseeable that if the scale of the knowledge base
continues to expand, the quality gap of the results between DMCS and DFS will be smaller and
smaller through adequate training, and the difference in computational efficiency will be bigger
and bigger. Overall, DMCS is promising to achieve real-time FKI on ever-expanding design
knowledge bases with acceptable optimality.

To validate the effect of the health-oriented hypothesis on improving algorithm convergence, an
ablation experiment was designed. It is a version of DMCS without 77, reward, and after
training, this new model runs under the same experimental conditions as the previous experiments.
And according to the results, the performance of the DMCS without 77,; reward is muchlower
than that of DMCS except for the mean time and total time. This result is
inlinewiththeexpectationbecause the redundancy number is used to measure path optimality
besidesthe health-oriented hypothesis. Therefore, the absence of 754, reward not only affects the
success, but also haseffect on the results quality. In conclusion, 77, reward designed on

health-oriented hypothesis can lead to a much better convergence quality of DMCS.

5 Conclusion & Future work

For facilitating the new product design, the integration algorithm of existing functional knowledge
units is illustrated through a series of work, including knowledge base construction, episode
definition, reward setting, and Q-Network design.

We built a complete application framework of RL in FKI, and the DMCS algorithm is the
kernel of this framework. DMCS has quite good computational efficiency in the real-time

generation of functional unit chains in large-scale KBs compared with the traditional
traverse-based searching algorithms. DMCS supports an optional automatic or
semi-automaticiterative FKI by allowing designers to modify the existing functional design
scheme and subsequent design direction during the design process.

For future work, considering the need for further refinement of the conceptual design scheme,
we will make full of the Carrier attribute of the functional unit to record more information such
as price, weight, volume, and the life cycle of a product. Based on this information, the designer
can choose the appropriate specific design prototype for each abstract function in the scheme
according to the requirements. The current evaluation of the optimal path considers only the
redundant number, and a joint metric should be defined in the future. Last but not least, we will try
more methods to continue improving the performance of the RL algorithm, such as parallelization,

trying other neural architectures and balance strategies between exploration and exploitation.

Funding

This work is supported by the XieYoubai Design Science Foundation (No. XYB-DS-202205).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

[1] Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. A7 Mag., 11, 26-36.
https://www.researchgate.net/publication/30870218 Design_Prototypes A Knowledge Representation Schema f
or Design

[2] Stone, R. B., & Wood, K. L. (2000). Development of a functional basis for design. J. Mech. Des., 122 (4),
359-370. https://doi.org/10.1115/1.1289637

[3] Tang, L. (2008). An approach to function identification in automated conceptual design of mechanism systems.
Res. Eng. Des., 19 (2-3), 151-159. https://doi.org/10.1007/s00163-008-0048-z

[4] Kurtoglu, T., Swantner, A., & Campbell, M. L. (2010). Automating the conceptual design process: From black
box to component selection. Artif. Intell. Eng. Des. Anal. Manuf., 24 (1), 49-62.
https://doi.org/10.1017/S0890060409990163

[5] Helms, B., & Shea, K. (2012). Computational synthesis of product architectures based on object-oriented
graph grammars. J. Mech. Des., 134 (2), 021008. https://doi.org/10.1115/1.4005592

[6] Huang, W., & Campbell, M. 1. (2015). Automated synthesis of planar mechanisms with revolute, prismatic and
pin-in-slot joints. In: International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 57137. American Society of Mechanical Engineers, VOSBT08A062.
https://doi.org/10.1115/DETC2015-46073

[7] Miinzer, C. (2015). Constraint-Based Methods for Automated Computational Design Synthesis of Solution
Spaces (Doctoral Dissertation). ETH-Ziirich, Nr. 22990. https://doi.org/10.3929/ethz-a-010603411

[8] Herber, D. R., Guo, T., & Allison, J. T. (2017). Enumeration of architectures with perfect matchings. J. Mech.

https://www.researchgate.net/publication/30870218_Design_Prototypes_A_Knowledge_Representation_Schema_for_Design�
https://www.researchgate.net/publication/30870218_Design_Prototypes_A_Knowledge_Representation_Schema_for_Design�
https://doi.org/10.1115/1.1289637�
https://doi.org/10.1007/s00163-008-0048-z�
https://doi.org/10.1017/S0890060409990163�
https://doi.org/10.1115/1.4005592�
https://doi.org/10.1115/DETC2015-46073�
https://doi.org/10.3929/ethz-a-010603411�

Des., 139 (5), 051403. https://doi.org/10.1115/1.4036132

[9] Short, AR., DuPont, B.L., Campbell, M.I. (2019). A comparison of tree search methods for graph topology
design problems. In: International Conference on-Design Computing and Cognition, pp. 75-94. Springer, Cham.
https://doi.org/10.1007/978-3-030-05363-5_5

[10] Chen, B., &Xie, Y. B. (2017). A computer-assisted automatic conceptual design system for the distributed
multi-disciplinary resource environment. Proc. Inst. Mech. Eng. C, 231 (6), 1094-1112.
https://doi.org/10.1177/0954406216638886

[11] Chen, B., &Xie, Y. B. (2017). Functional knowledge integration of the design process. Sci. China Technol.
Sci., 60 (2), 209-218. https://doi.org/10.1007/s11431-016-0236-8

[12] Chen, B., &Xie, Y. B. (2018). A function unit integrating approach for the conceptual design synthesis in the
distributed resource environment. Proc. Inst. Mech. Eng. C, 232 (5), 759-774.
https://doi.org/10.1177/0954406217692008

[13] Zhang, Y., Wang, H., Zhai, X., Zhao, Y., & Guo, J. (2021). A C-RFBS model for the efficient construction
and reuse of interpretable design knowledge records across knowledge networks. Syst. Sci. Contl Eng., 9 (1),
497-513. https://doi.org/10.1080/21642583.2021.1937373

[14] Chen, B., Hu, J., Qi, J., & Chen, W. (2021). Concurrent multi-process graph-based design component
synthesis: Framework and algorithm. Eng. Appl. Artif. Intell., 97, 104051.
https://doi.org/10.1016/j.engappai.2020.104051

[15] Chen, B., Hu, J., Chen, W., & Qi, J. (2021). Scalable multi-process inter-server collaborative design synthesis
in the Internet distributed resource environment. Adv. Eng. Inform., 47, 101251.
https://doi.org/10.1016/j.aei.2021.101251

[16] Vinyals, O., Babuschkin, 1., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P.,
Jaderberg, M., ... Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575 (7782), 350-354. https://doi.org/10.1038/s41586-019-1724-z

[17] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S.,
Hesse, C., Jozefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M., Pinto, H. P. d. O., Raiman, J., ... Zhang, S.
(2019). Dota 2 with large scale deep reinforcement learning. http://arxiv.org/abs/1912.06680

[18] Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-Y., & Hon, H.-W. (2020).
Suphx: Mastering Mahjong with deep reinforcement learning. http://arxiv.org/abs/2003.13590

[19] Jiang, Q., Li, K., Du, B., Chen, H., & Fang, H. (2019). DeltaDou: Expert-level Doudizhu Al through self-play.
In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 1265-1271.
https://doi.org/10.24963/ijcai.2019/176

[20] Zha, D., Xie, J., Ma, W., Zhang, S., Lian, X., Hu, X., & Liu, J. (2021). DouZero: Mastering DouDiZhu with
self-play deep reinforcement learning. http://arxiv.org/abs/2106.06135

[21] Campbell, M. L., Cagan, J., &Kotovsky, K. (1999). A-Design: An agent-based approach to conceptual design
in a dynamic environment. Res. Eng. Des., 11 (3), 172-192. https://doi.org/10.1007/s001630050013

[22] Vale, C. A. W., & Shea, K. (2003). A machine learning-based approach to accelerating computational Design.
In: International Conference on Engineering Design, pp. 183-184.
https://www.designsociety.org/publication/38/DS+31%3 A+Proceedings+of+ICED+03%2C+the+14th+Internationa
I+Conference+on+Engineering+Design%2C+Stockholm

[23] Xie, Y. B. (2018). Design Science and Design Competitiveness [M]. Beijing: Science Press. ISBN:
9787030554383.
https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B662BB6ADS54C311E0E053020BOA0ACF1C

https://doi.org/10.1115/1.4036132�
https://doi.org/10.1007/978-3-030-05363-5_5�
https://doi.org/10.1177/0954406216638886�
https://doi.org/10.1007/s11431-016-0236-8�
https://doi.org/10.1177/0954406217692008�
https://doi.org/10.1080/21642583.2021.1937373�
https://doi.org/10.1016/j.engappai.2020.104051�
https://doi.org/10.1016/j.aei.2021.101251�
https://doi.org/10.1038/s41586-019-1724-z�
http://arxiv.org/abs/1912.06680�
http://arxiv.org/abs/2003.13590�
https://doi.org/10.24963/ijcai.2019/176�
http://arxiv.org/abs/2106.06135�
https://doi.org/10.1007/s001630050013�
https://www.designsociety.org/publication/38/DS+31:+Proceedings+of+ICED+03,+the+14th+International+Conference+on+Engineering+Design,+Stockholm�
https://www.designsociety.org/publication/38/DS+31%3A+Proceedings+of+ICED+03%2C+the+14th+International+Conference+on+Engineering+Design%2C+Stockholm�
https://www.designsociety.org/publication/38/DS+31%3A+Proceedings+of+ICED+03%2C+the+14th+International+Conference+on+Engineering+Design%2C+Stockholm�

000

[24] Chen B. (2019). Theoretical And Methodological Research On The Functional Knowledge Integration In The
Design Process Based On The Distributed Resource Environment [D]. Shanghai:Shanghai Jiaotong University.
https://doi.org/10.27307/d.cnki.gsjtu.2018.000634

[25] Szepesvari, C.(2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 9. https://doi.org/10.1007/978-3-031-01551-9

[26] Beleznay, F.; Grobler, T. &Szepesvari, Cs. (1999). Comparing Value-Function Estimation Algorithms in
Undiscounted Problems (TR-99-02) , Technical report, Mindmaker Ltd. , Budapest 1121, Konkoly Th. M. u. 29-33,
Hungary

[27] Liu, H., Zhou, S., Chen, C., Gao, T., Xu, J., & Shu, M. (2022). Dynamic knowledge graph reasoning based
on deep reinforcement learning. Knowl.-Based Syst., 241, 108235.
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108235

[28] Ma, J., Hu, J., Zheng, K., & Peng, Y. H. (2013). Knowledge-based functional conceptual design: Model,
representation, and implementation. Concurr. Eng. Res. Appli., 21 (2), 103-120.
https://doi.org/10.1177/1063293X13487358

Appendix

Table 7lists all the FUs mentioned in the case study.
Table 7
A complete description of the FUs mentioned in Fig. 13.

ID: FU6 Category: Transformation
Inputl: Modifier: None
Core word: electricity
Features: {(voltage, 380, V), (phase number, 3, None), (AC/DC, AC, None), (power, [50, 150], kwW)}
Outputl: Modifier: None
Core word: electricity
Features: {(voltage, 220, V), (frequency, 60, Hz), (phase number, 3, None), (AC/DC, AC, None), (power, [50,
150], kW)}
Prior: (FU9, FU10, FU127, FU128)
Next: (FU7, FU16, FU22, FU24, FU32, FU39, FU44, FU45, FU50, FU59, FU125, FU134, FU140, FU142, FU150,
FU157, FU162, FU163, FU168, FU177)
Carrier: (transformer)
ID: FU10 Category: Transformation
Inputl: Modifier: (Rotational)

Core word: mechanical energy

Features: {(rotational speed, [900,4000], r/min), (torque, [11,25], N.m)}

https://doi.org/10.27307/d.cnki.gsjtu.2018.000634�
https://doi.org/https:/doi.org/10.1016/j.knosys.2022.108235�
https://doi.org/10.1177/1063293X13487358�
javascript:;�

Outputl: Modifier: None
Core word: electricity
Features: {(voltage, 380, V), (phase number, 3, None), (AC/DC, AC, None), (power, [95, 105], kW)}
Prior: (FU7, FU37, FU125, FU155)
Next: (FU6, FU124)
Carrier: (alternating-current generator)
ID: FU15 Category: Transformation
Inputl: Modifier: None
Core word: flowing warter
Features: {(flow velocity, [0.8,2], m/s), (flow rate, [0.65,1.87], m3/s)}
Outputl: Modifier: (water)
Core word: kinetic energy
Features: {(maximum storage depth, 4, m)}
Prior: None
Next: (FU34, FU152)
Carrier: (dam)
ID: FU22 Category: Transformation
Inputl: Modifier: None
Core word: electricity
Features: {(voltage, 220, V), (frequency, 60, Hz), (phase number, 3, None), (AC/DC, AC, None), (power, [50,
150], kW)}
Outputl: Modifier: (velocity)
Core word: regulation signal
Features: {(voltage, [3,5], V)}
Prior: (FU6, FU12, FU124, FU130)
Next: (FU34, FU152)
Carrier: (velocity regulator)
ID: FU34 Category: Transformation
Inputl: Modifier: (water)

Core word: potential energy

Features: None

Input2: Modifier: (velocity)

Core word: regulation signal

Features: {(voltage, [3,5], V)}

Outputl: Modifier: (water)

Core word: kinetic energy

Features: {(flow velocity, [5,20], m/s)}

Prior: (FU15, FU22, FU133, FU140)
Next: (FU37, FU155)
Carrier: (control gate, drainage gate)

ID: FU37 Category: Transformation

Inputl: Modifier: (water)

Core word: kinetic energy

Features: {(flow velocity, [4,25], m/s)}

Outputl: Modifier: (Rotational)

Core word: mechanical energy

Features: {(rotational speed, [1000,3000], r/min), (torque, [11,20], N.m)}

Prior: (FU34, FU152)

Next: (FU10, FU128)

Carrier: (hydraulic turbine)

javascript:;�

	FKI.pdf
	Innovation design orientedfunctional knowledge integration framework based onreinforcement learning
	Abstract
	1 Introduction
	2 Model Description
	2.1 Representation of Functional Knowledge Graph
	2.2 Representation of Functional Unit
	2.2.1 Representation of Input/Output
	2.2.2 Synonym Management of Keywords

	2.3 Rules for Matching
	2.4 Task of FKI

	3 Functional Unit Chain Generation algorithm
	3.1 Why RL
	3.2 Deep Monte Carlo Searching
	3.2.1 Interval Epsilon Greedy Policy
	3.2.2Rewards
	3.2.3Input Features of Q-Network
	3.2.4 Architecture of Q-Network & Training algorithm

	4Experiments
	4.1 Experimental Setup
	4.1.1Requirement Generation Algorithm
	4.1.2 FKGExpansion

	4.2 Implementation Details & Training Condition
	4.3 Effectiveness & Case Study
	4.4 Performance & Ablation Study
	5 Conclusion & Future work
	Funding
	References
	Appendix

