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1. 年度计划研究内容 

 2022.1-2022.12  

(1) 收集与项目研究内容相关的文献，完成已有研究方法和研究结果的调研； 

(2) 设计实现产品功能表示的预处理算法，以获取产品功能的标准化表示； 

(3) 分析功能知识单元表示的特点，设计知识库的结构。 

2. 年度研究进展及成果 

2.1 年度研究进展 

目前已收集了与项目研究内容相关的文献，并对已有的研究方法和研究结

果进行了调研。在此基础上，本项目完成的主要工作包括：产品功能的标准化表

示、基于 bucket 的用词对齐、功能知识图谱的设计、以及功能单元匹配算法。

下面逐一介绍各部分研究工作。 

（1）产品功能的标准化表示 

功能单元是描述产品功能的最小单位，本项目采用“输入+输出”的方式对

功能单元进行描述。因为输出描述了产品所能对外提供的功能，因此规定一个功

能单元可包含若干个输入，但仅仅包含一个输出。功能单元的输入和输出采用关

键词表示，其中关键词又可分为核心词和修饰词，如图 1 所示。 

图 1 功能知识单元的表示 

图 1 中，功能知识单元特征存放此单元重要的非功能要求，例如价格、交

货期、可靠性等，采用关键词（包括名称及对应的值）表示，例如“价格（100

元）”。输入和输出的表示方法相同，均采用核心词+修饰词的形式。修饰词是对

核心词进行的可度量或不可度量的修饰。如某输入为“流动的水”，其中核心词为

“水”，“流动的”是不可度量的修饰词。再如，对于输出“220V 的电”，“220V”则

是对核心词“电”的可度量的修饰词。 

（2）基于 bucket 的用词对齐 



在使用关键词表示法对功能单元的输入/输出进行描述时，由于同义词的存

在，不同人描述相同的输入/输出所使用的关键词有可能不同，这样会导致对功

能单元间匹配关系的错误判断。例如，对于输入“electricity supply”和“electric 
power supply”，因为其核心词 electricity supply和 electric power supply是同义词，

均表示电源，所以两者实际是对同一种输入的不同表述。然而，若单纯从单词是

否相同去判断，并无法将两者等同。 
在跨学科知识表示中，受不同学科背景的影响，这个问题尤为明显。为此，

本项目提出了一种基于桶（bucket）的同义词管理机制来构建关键词词典，词义

相同的词存储在一个桶中，每个桶用一个标签词（tag）表示。基于 bucket 的关

键词词典生成步骤如下： 
（a）当第一个单词被添加至词典时，为其创建一个桶，并为此桶设置标签

词作为其唯一标识符，标签词的默认值为桶中添加的第一个单词，允许设计师对

每个桶的标签词自由修改。 
（b）当一个新单词被添加至词典时，根据这个单词与现有各桶的标签词之

间的相似度，推荐与它最为相似的 N 个桶标签词。由设计师决定是将其分配给

Top-N 个推荐的桶中的一个，还是为其创建一个新桶。 

建立关键词词典后，在描述输入/输出时，存储在同一个桶中的不同单词由

同一个标签词代指，从而有效地避免表达的歧义。特别的，由于多义词同时存在

于多个桶中，设计者需根据使用时的语境判断其桶的归属。依旧使用上述的例子

进行说明，假设存在桶“electricity supply，electric power supply”，以 electricity 

supply为标签词，那么不管设计师使用“electricity supply”或“electric power supply”

描述功能的输入，此输入均会被自动转化为“electricity supply”后存储至知识库。 

（3）功能知识图谱的设计 

本项目使用知识图谱进行功能单元的存储，其中知识图谱中的节点表示功

能单元，节点之间的边表示两个功能单元间的匹配关系。每个节点的信息如表 1

所示。 

表 1 知识图谱中节点信息 

属性 含义 

ID 每个功能单元在功能知识图谱中唯一的标识 

需求类型 功能单元所能够满足用户的需求的类型，可取值为物质需求、

社会需求和精神需求 

功能类型 功能单元所提供的功能的类别，可取值为转变功能、支承功

能、存储功能和激励功能 

输入 功能单元的输入，使用“核心词+修饰词”表示。输入可以有多



个 

输出 功能单元的输出，使用“核心词+修饰词”表示。输出仅有一个 

实现载体 功能的实现载体，采用文字描述 

特征 功能知识单元的特征，采用 “关键词（包括名称及对应的值）”

表示 

输入匹配节点 是一个功能单元 ID 的集合，集合中的功能单元的输出与当前

功能单元的输入匹配。 

输出匹配节点 是一个功能单元 ID 的集合，集合中的功能单元的输入与当前

功能单元的输出匹配 

一个功能单元的输入/输出匹配节点决定了功能知识图谱中与此功能单元

节点所邻接的节点。 

（4）功能单元匹配算法 

两个功能单元𝐹𝐹𝐹𝐹𝑖𝑖和𝐹𝐹𝐹𝐹𝑗𝑗匹配定义为：𝐹𝐹𝐹𝐹𝑖𝑖和𝐹𝐹𝐹𝐹𝑗𝑗的输入和输出间存在匹配关

系。这里，一对输入和输出满足匹配关系指：它们的核心词存在于同一个 bucket

中，且输出的修饰词包含于输入的修饰词。 

当一个功能单元进入知识图谱时，需要使用功能单元匹配算法确定它的输

入匹配节点和输出匹配节点。功能单元匹配算法描述如下。 

输入：功能单元𝐹𝐹𝐹𝐹𝑖𝑖的输入和输出信息 

输出：𝐹𝐹𝐹𝐹𝑖𝑖的输入匹配节点集合和及输出匹配节点集合 

（a） 将当前知识图谱中的所有功能单元放入待匹配功能单元集合 M 中。 

（b） 当𝑀𝑀 ≠ ∅时，从 M 中取出一个功能单元𝐹𝐹𝐹𝐹𝑗𝑗 (i ≠ j)，执行： 

i. 如果𝐹𝐹𝐹𝐹𝑗𝑗的输出与𝐹𝐹𝐹𝐹𝑖𝑖的输入匹配，则将𝐹𝐹𝐹𝐹𝑗𝑗的 ID 放入𝐹𝐹𝐹𝐹𝑖𝑖的输入匹配节

点集合。 

ii. 否则，判断𝐹𝐹𝐹𝐹𝑗𝑗的输入是否与𝐹𝐹𝐹𝐹𝑖𝑖的输出匹配。若匹配，则将𝐹𝐹𝐹𝐹𝑗𝑗的 ID

放入𝐹𝐹𝐹𝐹𝑖𝑖的输出匹配节点集合。 

iii. 将FUj从 M 中删除。 

（c） 算法结束。 

 

2.2 年度研究成果 

本年度项目的研究成果包括申请专利一项，完成研究论文一篇（投往

《Advanced Engineering Informatics》）。详细信息见附录。 
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Abstract 

School of Mechanical Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China 

According to the basic law of Design Science, new product design is based on existing design 
knowledge. Knowledge integration can be applied to product function design to shorten design 
timeand improve the design quality through effective use of the existing knowledge. With the 
increase of the product design complexity and the number of design knowledge, itis harder and 
harder for traditional traversal-based algorithms tocomplete knowledge integration under 
acceptable time cost. A Reinforcement Learning (RL) based functional knowledge integration 
framework is proposed. Thefunctional knowledge is represented by its input and output, and 
organized using a knowledge graph.The Q-network is constructed and trained for the deep Monte 
Carlo method-based functional unit chain generation algorithm. The performance experiments 
show that comparing with the traditional searching algorithms, the RL based algorithm can 
provide same quality design scheme with much shorter time. The proposed algorithm is promising 
to realize real-time functional knowledge integrationin large-scale knowledge bases. 
 

Keywords: F

1 Introduction 

unctional knowledge integration; Computational design synthesis; 

Reinforcement Learning; Knowledge graph 

Innovative design is the key for companies to maintain market competitiveness. Conceptual 
design, as the initial stage of design, has always attracted much attention. According to the 
fundamental law of Design Science, new product design is based on existing design knowledge. 
Knowledge integration, or design synthesis, means to search and reuse existing design knowledge 
to assist new product design. Different from designers’ traditional internal search methods such 
as brainstorming, knowledge integration can be combined with computer technology conveniently, 
and various computer-aided conceptual design scenarios see its application. During product design, 
it is widely accepted that the satisfaction of product function requirements is the primary 
consideration of designers [1,2,3,4]. Function design is the starting point for the following 
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structure design and behavior design. Therefore, this paper focuses on the function level design 
synthesis, i.e., functional knowledge integration (FKI). In more detail, FKI is the search and 
combination of existing functional knowledge through automated algorithms to generate 
innovative solutions that meet the product’s target function requirements.  

In general, a function is described by its inputs and outputs. Knowledge for function design is 
stored in the knowledge base (KB) in the form of functional units (FU), the smallest reuse unit of  

 

Fig. 1. An example of FKI. 
 

function design knowledge.A simple example of the warm air blower design is shown in Fig. 1. 
The requirement, as well as the function of this product, is to provide warm air, and the inputs and 
output of the blower are given in Fig. 1(a). FKI is introduced to find a possible way to design this 
product by searching a given knowledge base, and it finds that three functional units, i.e., FU1 
(motor), FU2 (fan), and FU3 (air heater), are suitable. According to the inputs and outputs of these 
FUs, the design can realize the function of the warm air blower by linking them together, as shown 
in Fig. 1(b).  

Nowadays, the complexity of the design task is increasing day by day. An intuitive 
manifestation is that the knowledge required by lots of product design has changed from 
single-disciplinary to multi-disciplinary, and the useable design knowledge stores with different 
vendors. This trend has led to more general knowledge representation models and a significant 
increase in the size of design knowledge bases. The efficiency of FKI algorithms, as the guarantee 
for their effective execution in large-scale knowledge bases, has naturally become an important 
research direction. 

Because the FKI problem shares many similarities with the graph search problem in essence, 
graph theory plays a pivotal role in the computerization of the FKI process.Helm and Shea [5] 
introduced object-oriented graph grammars to the traditional Function-Behavior-Structure (FBS) 
conceptual design model toimprove the representability and computer comprehensibility of FKI 
processes. For a particular FKI task of planar N-bar mechanisms design with rotary, prismatic, and 
pin-in-slot joints, Huang and Campbell [6]explicitly represented the planar topology of the 
mechanism as a graph to enumerate all possible topologies of the mechanism with any 
combination of the three joints. Münzer [7] proposed a graph-based and object-oriented 
representation of functional units. According to this representation, they provided a general and 



automated FKI approach. Herber et al. [8] and Short et al. [9] further improved the enumeration 
capability of graph-based FKI approach through a tree searching algorithm, and achieved 
complete coverage of the solution space. Most of the above work adopted the top-down FKI 
method. Here, Top-down means if a function is too complex to be matched directly by a functional 
unit, the original function is disintegrated into sub-functions with decreased complexity or 
granularity. The sub-functions can be further divided into sub-sub-functions when necessary, 
andall these functions form a tree with the original function as the root. After the sub-functions 
represented by the leaf nodes are successfully matched, backtracking is carried out along the 
decomposition path to synthesize the design scheme of the root function. Commonly, such work 
builds on FBS design model [1] and flow-based input/output representation [2].  

Chen and Xie[10,11] proposed a more flexible keyword-based representation of input/output, 
and reformulated the FKI process as a multi-source path searching problem. They also proposed 
an automated algorithm to generate functional design schemes by generating chain-shaped 
functional unit collections. The searching algorithm was extended to generate a more 
complexbranch-chain-shaped structure through the introduction of the auxiliary functional unit 
chain and incomplete matching [12]. In these works, the FKI problem is solved with the 
bottom-up method, which eliminates the explicit function decomposition process and searches the 
suitable functional units purely by their inputs and outputs. For a complex function, each search 
iteration can only complete part of the design, and after multiple iterations, the design scheme of 
the full requirements can be finally obtained. Compared with the top-down method, bottom-up 
method pays more attention to the complexity of the function unit structure itself rather than the 
granularity, and it has higher probability to obtain more flexible and creative design schemes. The 
algorithm proposed in this paper belongs to bottom-up category. 

However, the basic idea of most existing functional unit searching algorithmsis traversal based, 
whether they are top-down or bottom-up. These algorithms can perform quite well with small 
number of functional units, and they can find the optimal solution due to their enumeration nature. 
With the increasing scale of knowledge bases, these algorithms are prone to have combinatorial 
explosion problems, i.e., they cannot find a solution within afeasible time. Tosolvethisproblem, 
Zhang et al. [13] proposed a presentation method of granular information in knowledge graphs, 
which integrated graph reasoning technology while retaining the knowledge layering mechanism 
and improved the algorithm search efficiencyfrom the perspective of optimizing the knowledge 
storage structure. To make full use of distributed computing resources and improve the algorithm 
efficiency, Chen [14,15] distributed the computing load to multiple processors for parallel 
searching. As these methods do not change the ergodic nature of the searching algorithms, the 
combinatorial explosion problem has not been eradicated. 

Reinforcement learning(RL) achieves competitive performance in many large-scale and 
imperfect-information games, such as Star craft [16], DOTA [17], Mahjong [18], and DouDizhu 
[19,20], yet it has rarely been tried in FKI [21,22]. One contribution of this work is to bring RL to 
FKI tasksto bring some possible, active, and new development directions. 

In this paper, a functional knowledge integration framework based on RL is proposed.The core 
of this framework is the functional unit chain generation algorithm called the Deep Monte Carlo 
Search (DMCS). The input of DMCS is the semantic description of the new product’s target 
function requirements, and the output is the functional unit chain describing the design scheme 
(defined in Section 3.4).Based on the characteristics of RL, the FKI process in DMCS is 



essentially a sequential reasoning process.Compared with the traditional searching process, the 
optimal solution can be obtained without traversing the solution space, thus avoiding the 
combinatorial explosion problem. At the same time, the reasoning speed only depends on the 
length of the reasoning path and is insensitive to the size of the knowledge base, then DMCS can 
maintain real-time search even on large-scale knowledge bases. 

The structure of the paper is as follows. In Section 2, the models used in FKI are formally 
described. Section 3 explains the functional unit chain generation algorithm. In Section 4, the 
experiment setup and results are given in detail. Section 5 concludes the paper and lists future 
work.  

2 Model Description 

FKI is essentially a design search problem that takes place in the functional knowledge base. 
Therefore, the construction of KB is provided before the formal description of the FKI problem. 

2.1 Representation of Functional Knowledge Graph 

Since the relationship among functional knowledge units in KB can be modeled as a planar graph 
structure, it is very nature to introduce the concept of knowledge graph to the FKI tasks. We name 
this knowledge base the functional knowledge graph (FKG). This graph database structure is 
suitable for the subsequent knowledge reasoning process [13]. 

FKG is represented by a directed graph𝐺𝐺(𝑉𝑉,𝐸𝐸), where𝑉𝑉 is the set of nodesin𝐺𝐺and 𝐸𝐸 is the set 
of edges.Node𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉  represents a functional unit, and edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸  denotes the matching 
relationship between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 .Knowledge in FKG is expressed as triples in the form of 
(functional unit, matching relation, functional unit). For example, 𝐹𝐹𝐹𝐹𝑖𝑖 → 𝐹𝐹𝐹𝐹𝑖𝑖  indicates that the 
output of the functional unit 𝐹𝐹𝐹𝐹𝑖𝑖is matched by the input of𝐹𝐹𝐹𝐹𝑖𝑖 . 𝐹𝐹𝐹𝐹𝑖𝑖 is called the predecessor of 
𝐹𝐹𝐹𝐹𝑖𝑖 ,and 𝐹𝐹𝐹𝐹𝑖𝑖  is called the successor of 𝐹𝐹𝐹𝐹𝑖𝑖 .To improve the convergence of the searching 
algorithm (see in Section 3.2.2) and measure the optimality of the resulting path (see in Section 
2.4), the number of unmatched inputs and outputs between adjacent nodes is further added to the 
matching relationship as an important attribute value, represented as a label on the edge.For 

example,𝐹𝐹𝐹𝐹1
0
→ 𝐹𝐹𝐹𝐹2means that 𝐹𝐹𝐹𝐹1and 𝐹𝐹𝐹𝐹2match completely. 

2.2 Representation of Functional Unit 

The structure of the functional unit ontology is shown in Table 1, which contains seven attributes. 
ID is the unique identifier of the functional unit in the FKG. Input and Output represent the input 
and output of a functional unit, and they describethe basic contents of a product function. Prior 
and Next reflect the position(or adjacency) relationship of functional units in the FKG. The entries 
in Prior and Next are the predecessors and successors of the current functional unit 
respectively.Category refers to the category of the function provided by the functional unit, 



including the transformation function, support function, storage function, and incentive function 
[23]. Carrier means the physical or technical prototype to implement the function of the 
functional unit in the real world. Among them, Input and Output are of the most importance, and 
the Category and Carrier will not be covered further since they are reserved for later structure 
design work. 
 
 
Table 1 
The construction of the functional unit ontology. 

Attribute ID Input Output Prior Next Category Carrier 

Type Int Set Set Set Set String Set 

 

Table2 
Representation of input and output. 

Input/Output Type Format 

Keywords 
Core word Int Bucket 

Modifier Set of int {Bucket,...} 

Features Set of tuple {(Name,Range,Unit),...} 

2.2.1 Representation of Input/Output 

The keyword-based representation is chosen to describe the input/output of functional units. 
Compared with the traditional flow-based representation, this method is more concise and flexible. 
Without the limitation to material flow, energy flow and information flow, the input/output of 
functional units can be distinguished accurately. Keyword-based representation is promising to 
representinterdisciplinary function design knowledge. 

AFU can have a certain number of inputs and outputs, each of which is described by keywords 
and features, as shown in Table 2. The keywords adopt the form of “modifier + core word”, and 
there is only one core word and several modifiers for each keyword. The core word is a word or 
phrase representing an object, and the modifier is a word or phrase providingadditionalsemantic 
information to the core word. For example, for the input “fresh, clean + flowing water”, “flowing 
water” is the core word, and “fresh, clean”are the modifiers. The features adopt the form of “name 
+ range + unit” to provide specific constraint information, e.g., “voltage + [220] + V” can be a 
feature of the input “electricity”, where “voltage” is the feature name, “[220]” gives the 
valuerange of this physical variable, and “V” is the corresponding unit of the feature of voltage. 

2.2.2 Synonym Management of Keywords 

Eachwordmayhave synonyms, soitis common todescribethesame input/output ofanFUusing 



different keywords, which leads to misjudgment when doing the automatic matching. For example, 
the keywords “electricity supply” and “electric power supply” are synonyms and are different 
expressions of the same input. However, these two keywords cannot be matched if exact same 
words are required.  

To solve the problem of diverse expression, a bucket-based synonym management mechanism 
is proposed to construct the keyword dictionary in which a bucket is a cluster that stores synonyms 
together. The bucket management algorithm works in the following steps. 

(1) When the first word is 
inserted into the synonym 
dictionary, a bucket is created. The 
bucket is assigned a tag as its 
unique identifier, and the first 
word into the bucket is the default 
value of this tag. 

(2) When a new word is added 
to the dictionary, it is up to the 
user to decide whether to assign it 
to one of the existing top-n 
recommended buckets or create a 
new bucket for it, depending on its  
meaning. The recommendation is 

given based on the similarity between this new word and the tags of each bucket.  
After establishing the keyword dictionary, when describing input/output, words in the same 

bucket correspond to the same tag. The use of buckets can avoid the occurrence of diverse 
expressions effectively. In particular, which bucket should a polysemy belongs to is determined by 
the designer according to the context. The example above is used for illustration again. If there is a 
bucket of “electricity supply, electric power supply” with “electricity supply” as its tag,then no 
matter whether the designer inputs the core word “electricity supply” or “electric power supply”, 
“electricity supply” will be stored actually in the KB after transformation. 

Fig. 2 gives an example of a functional unit built according to the above rules. 

2.3 Rules for Matching 

There are two kinds of matching relationship considered in this paper, one is the matching 
between an input and an output, and the other is the functional units matching. The former means 
that an input and an output are regarded as equivalent to some extent. The latter means that these 
two functional units can be integrated to form a new bigger functional unit. Input/Output matching 
is the foundation for matching between corresponding functional units. The specific rules for 
matching are as follows. 
Rules for Input/Output Matching.For a pair of input and output, they match if their core words 
are in the same bucket, the modifiers and features of the output contain those of the input. In 
particular, if a feature appears in both the input and output, the range of its value in input should 
cover that in output. Fig. 3 shows an example of input-output matching. 
Rules for Functional UnitsMatching.For functional units 𝐹𝐹𝐹𝐹𝑖𝑖 and 𝐹𝐹𝐹𝐹𝑖𝑖 , if at least one output of 



𝐹𝐹𝐹𝐹𝑖𝑖  matches at least one input of 𝐹𝐹𝐹𝐹𝑖𝑖 , 𝐹𝐹𝐹𝐹𝑖𝑖is matchedby𝐹𝐹𝐹𝐹𝑖𝑖 . 

2.4 Task of FKI 

FKI is the task of searching for feasible solutions thatcan achieve the target function by exploring 
the knowledge base. For the convenience of algorithm description, the target function is abstracted 

Fig.3. A matching pair of input and output. 
 

Fig. 4. The process of FKI task. 
 

into two virtual nodes 𝑆𝑆𝑆𝑆and 𝐸𝐸𝐸𝐸 that do not really exist in FKG. Node 𝑆𝑆𝑆𝑆 only has the Output 
corresponding to the target inputs, and conversely node 𝐸𝐸𝐸𝐸  only has the Input attribute 
corresponding to the target output.Then, an FKItask can be reformulated as searching for an 
optimal path in FKG from node 𝑆𝑆𝑆𝑆 to 𝐸𝐸𝐸𝐸 under certain constraints as illustrated in Fig. 4(a). 

Due to the complexity of the function structure, the exceptedresult of FKI is often a composite 
path with both series and parallel structures, as shown in Fig. 4(c), which is difficult to be 



obtained by a single search. A common solution is to decompose the FKI task into smaller 
subtasks by using the ideology of dynamic programming [24]. In particular, the success condition 
of each search is relaxed to find an optimal path from node 𝑆𝑆𝑆𝑆𝑛𝑛  to 𝐸𝐸𝐸𝐸𝑛𝑛 , where unmatched inputs 
and outputs are allowed, as shown in Fig. 4(b). The nodes 𝑆𝑆𝑆𝑆𝑛𝑛and𝐸𝐸𝐸𝐸𝑛𝑛denotes the current target 
outputandinput in iteration n. The inputs and outputs unmatched in search iteration n-1, which 
aremarked with green and red respectively in Fig. 4(b), are taken as the target outputs/inputs for 
search iterationn. The number of unmatched inputs and outputs is recalculated after merging the 
resulting paths of iterationn-1 and iteration n. Theiteration continues until the number of 
unmatched inputs and outputs in the resulting path is 0, as shown in Fig. 4(c), and then, the whole 
FKI task is completed. 

Therefore, the FKI problem is an iterative problem. Since improving the efficiency of a FKI 
algorithm is the main objective of this paper, and the efficiency of iterative problem largely 
depends on the total number of iterations and the speed of each iteration, a greedy strategy is 
introduced to decrease the number of unmatched inputs and outputs in the path. In other words, 
the total number of unmatched inputs and outputs is the optimizationobjective for the result. The 
smaller this number, the better. This optimization object is in line with FKI's original optimality 
criterion of producing solutions as simple as possible. The efficiency of each iteration is another 
factor affecting the efficiency of the FKI algorithm. The searching algorithm for each iteration is 
called the Functional Unit Chain Generation algorithm, since it generates a series chain [24]. 

In general, the objective of an FKI is to find the optimal paths from node 𝑆𝑆𝑆𝑆 to 𝐸𝐸𝐸𝐸 in FKG. 
The basic idea is to decompose an FKI into subtasks and find the optimal chain for each subtask 
using the Functional Unit Chain Generation algorithm.As thetotal iterative framework (refer to 
Section 4.1 for more details) issimple,this paper focuses on the functional unit chain generation 
algorithm.For a better description, the number of unmatched inputs and outputs between adjacent 
functional units is called the local redundancy number, and that in one path is the global 
redundancy number, respectively. 

3 Functional Unit Chain Generation 
algorithm 

3.1 Why RL 

The process of RL belongs to a Markov Decision Process (MDP), as shown in Fig. 5. In any time 
step 𝑆𝑆, the agent performs the current optimal action 𝐴𝐴𝑆𝑆  under the observed environment state 𝑆𝑆𝑆𝑆  
according to the policy 𝜋𝜋. Then the action transforms the environment state into 𝑆𝑆𝑆𝑆+1. Depending 
on the specific content of the transformation, the environment gives the agent different feedback, 
namely reward 𝑅𝑅𝑆𝑆+1. The agent adjusts its policy based on the reward, and a simple way is to 
perform the same action thatearned the largest rewardsbefore when facing the same state. The 
purpose of this adjustmentor the so-called learning is to maximize the cumulative rewards (return 
𝐹𝐹𝑆𝑆) that may obtain in thefollowing time steps. Through such continuousinteractions with the 
environment, the agent gradually reinforces its understanding of the environmental rules, such as 
the mapping relationship of (𝑆𝑆𝑆𝑆 ,𝐴𝐴𝑆𝑆 ,𝑆𝑆𝑆𝑆+1) → 𝐹𝐹𝑆𝑆+1. 



The reason to adopt RL to solve the FKI problem is for effectiveness and efficiency. 
EffectivenessFor a general heuristic searching algorithm such as A∗ , whether it has good 
performance in a large graph database depends heavily on the heuristic function that measures the 
position relationship between the current node and the target node to guide the search direction. 
However, because of the asymmetric mapping between the inputs and outputs of the functional  

 
Fig. 5. The process of RL. 

 
units, the position relationship between the non-adjacent nodes can hardly be measured in the FKI 
problem. Although the RL method is heuristic-based, it is essentially a trial-and-error learning 
method. Its policy optimization depends on the experience obtained from the agent and 
environment interaction, not a specific heuristic function.The lack of a complete position 
relationship between nodes causes the agent to get less feedback from the environment, which 
only delays the algorithm convergence and brings more training iterations. However, it has little 
effect on the algorithm's effectiveness. 
Efficiency The RL method is more efficient than traditional traversal searching algorithms without 
considering the training time. It can obtain the approximate optimal path by sequential decision 
with no need to traverse the solution space, and it can decrease the effect of the FKG size on the 
algorithm efficiency. 

3.2 Deep Monte Carlo Searching 

The method proposed in this paper is an RL search algorithm based on Deep Monte Carlo (DMC), 
called Deep Monte Carlo Searching (DMCS).Referring to the description of the FKI task in 
Section 2.4, the FKG 𝐺𝐺(𝑉𝑉,𝐸𝐸) is taken as the environment, and 𝑉𝑉  constitutes theaction 
space𝒜𝒜.The episode of FKI is defined as follows. 
Episode In the initial stage, nodes 𝑆𝑆𝑆𝑆  and 𝐸𝐸𝐸𝐸  (i.e.,thenodesintroducedtorepresent target 
functional requirements) are first specified or randomly generated (during network training). 
Starting from 𝑆𝑆𝑆𝑆 , the agent selects and performs the action 𝑎𝑎𝑆𝑆 ∈ 𝒜𝒜at each time step 𝑆𝑆 , 
corresponding to moving from the current node to the next node. If the agent reaches the node 𝐸𝐸𝐸𝐸 
within the specified maximum search length, thesearch is successful, and the action trajectory of 
the agent is the desired path; otherwise, the search is a failure. In this way, the search process 
changesto a sequential decision process. 

The action selected at each time step in the episode depends on the policy𝜋𝜋. Usually, in 
off-policy RL, the greedy strategy 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎) is adopted as the target policy 𝜋𝜋𝑆𝑆  (the 
policy used for algorithm prediction and evaluation). Under𝜋𝜋𝑆𝑆 ,   the action producing the largest 
Q-value among all state-action pairs (𝑠𝑠,𝑎𝑎) is selected as the decision result. It is clear that the 
optimal decision can be made as long as the Q-value of all actions in each state is known. Q-value 
is actually the return 𝐹𝐹 mentioned before. Assuming that the value of𝐹𝐹can be calculated by an 



unknown function called Q-function, then how to obtain this Q-function is the primary 
consideration of RL methods. Actually, this is the selection of training methods. 

In this paper, the training method is the Every-visit DMC [20], and its overall stepscan be 
summarized in the following cycle. 

(1) Perform a complete episode based on the behavioral policy 𝜋𝜋𝑏𝑏 . This policy is used only 
during algorithm training. 

(2) Calculate the return 𝐹𝐹 of each state-action pair (𝑠𝑠,𝑎𝑎) in the episode as the Q-value of the 
network. 

(3) Update the network. 
In detail, DMCuses Q-network as the approximation of the Q-function and trains it through 

Monte Carlo (MC) method. Q-network is a neural network to predicate Q-value. It receives the 
current observable environment state as input and outputs the Q-values of all candidate 
actions.MC method is a stochastic simulation method based on probability and statistics theory, 
and it is also a frequently-used solution in RL. Shortcomings of the MC method are known as 
being only effective for complete episodes and its low convergence due to high variance. FKI is an 
episodic-based task, i.e., each search process is independent, then MC method can work well 
under this situation. At the same time, as MC can be parallelized conveniently, it can generate 
multiple samples per second, and it is very efficient in wall-clock time. According to the research 
results of Zha et al. [20], the benefits brought by DMC in scalability are far higher than the 
adverse effects of high variance on algorithm convergence. In addition, FKI is a sparse reward 
task, i.e., the agent needs to go through a long list of states without feedback, and the only time 
step that produces a non-zero reward is at the end of the search. For the Temporal-Difference 
Learning (TD) algorithm, the Q-value in the current state needs to be estimated until the value in 
the next state is close to its true value [25,26]. Therefore, the convergence speed will be slowed 
down. However, DMC only calculates the real returns of each state after the end of the episode, so 
its convergence is not affected by the length of the episode. In conclusion, the DMC method is 
well suited for the FKI task. 

3.2.1 Interval Epsilon Greedy Policy 

Exploration-exploitation trade-off is the major consideration when generating behavior policy. 
Exploitation means that the agent always performs the optimal action based on the observed 
environment state, while the agent is allowed to try non-optimal action for more extensive 
interaction with the environment in exploration. To achieve greater long-term returns, short-term 
returns have to be sacrificed sometimes by giving up a certain number of exploitations in favor of 
exploration. The 𝜀𝜀-greedy policy is defined in Eq.(1). 
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where 𝜀𝜀 is a scalar between 0 and 1. In this policy, the agent exploits with probability 1 − 𝜀𝜀 and 
performs random exploration with probability 𝜀𝜀.  
𝜀𝜀-greedy is one of the most basic and commonly used policies in RL.To improve the network 

performance, an interval 𝜀𝜀-greedy is proposed, in which the value of 𝜀𝜀changes dynamically based 
on the number of iterations, as shown in Eq.(2). 
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Where𝑒𝑒𝑒𝑒𝑖𝑖denotes the current number of episodes，𝑒𝑒𝑒𝑒𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 is the maximum number of thetraining 
episodes, and𝑒𝑒𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝐸𝐸 is half the number of 𝑒𝑒𝑒𝑒𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 .The main idea of the interval 𝜀𝜀-greedy policy is 
to divide the whole training process into two parts according to the number of training episodes. 
The agent is encouraged to explore with higher 𝜀𝜀 in the first half and exploit with lower 𝜀𝜀 in the 
second half. This simple method not only makes the global and local vision of the agent more 
balancedbut also makes the whole learning process smoother. Specifically, in this paper, the total 
iteration space is divided equally into two parent intervals. The former is further divided equally 
into ten subintervals, and the corresponding 𝜀𝜀 decreases uniformly from 1 to 0.1, The 𝜀𝜀in 
thelatterpart is fixed to 0.01. 

3.2.2Rewards 

The Rewards are the feedback from the environment for the transition of the observable states, and 
they can guide the agent's actions. In this paper, the rewards consist of four components: process, 
success, failure, and death reward.  
(1) Success reward  
The agent receives the success reward if it completes a successful search. It is an integer between 
0 and 10 to measure the optimality of the resulting path. When the redundancy number of the 
resulting path is 0, the agent gets the maximum reward of 10. When the redundancy number is 
greater than or equal to 10, the path has no learning significance, and the agent gets the minimum 
reward of 0. The existence of this reward is to guide the agent to find successful paths with as few 
redundancies as possible. The successreward is calculated by Eq.(3). 

 )10,0max( grednrsucc −=
 

(3)
 

where 𝑎𝑎𝑒𝑒𝐸𝐸𝑛𝑛𝑎𝑎denotes the global redundancy number. 
(2) Process reward 
In the task of FKI, because it is hard to measure the distance between any node and the target node 
𝐸𝐸𝐸𝐸in FKG, the transition of any two intermediate states cannot be evaluated by the change of their 
distance from 𝐸𝐸𝐸𝐸. 

To further explain, assume𝑒𝑒𝑎𝑎  and 𝑒𝑒𝑏𝑏  are any two connected entities in the knowledge graph, 
and the semantic information they carry in the form of word vectors is denoted as 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎  and 
𝑠𝑠𝑒𝑒𝑎𝑎𝑏𝑏 , respectively. For the general semantic-based knowledge graph reasoning tasks, {𝑒𝑒𝑎𝑎 ,𝑒𝑒𝑏𝑏} 
and {𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎 , 𝑠𝑠𝑒𝑒𝑎𝑎𝑏𝑏} are one-to-one mappings, as shown in Fig.6(a). In this case, the distance 
between 𝑒𝑒𝑎𝑎  and 𝑒𝑒𝑏𝑏  can be approximated as the distance between 𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎  and 𝑠𝑠𝑒𝑒𝑎𝑎𝑏𝑏 . For 
example, Liu et al. [27] proposed a dynamic reward mechanism, which correlated the reward with 
the cosine similarity between the current (entity, relation) pair and the target (entity, relation) pair. 
Their mechanism effectively alleviated the low convergence of the Actor-Critic network-based 
reasoning algorithm caused by the sparse reward. However, for the FKI task, a functional unit 
usually has multiple inputs and outputs, that is, {𝑒𝑒𝑎𝑎 , 𝑒𝑒𝑏𝑏}  and {{𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝑖𝑖)}, {𝑠𝑠𝑒𝑒𝑎𝑎𝑏𝑏(𝑖𝑖)}}  are 
one-to-one mapping, as shown in Fig.6(b). Since the mappings between {𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎(𝑖𝑖)}  and 



{𝑠𝑠𝑒𝑒𝑎𝑎𝑏𝑏(𝑖𝑖)}are not clear, it’s hard to measure the distance between 𝑒𝑒𝑎𝑎  and 𝑒𝑒𝑏𝑏  precisely by the 
word vector operation.  

Since no suitable measuring method is available, the agent only gets non-zero rewards at the 
end of the search. In other words, the value of theprocess reward is always zero. 

 
Fig. 6. The semantic mapping relationship between connected nodes in general inference task (a) 
and FKI (b). 
 
(3) Failure reward 
To go against the convergence reduction caused by the unobservable distance, a health-oriented 
hypothesis is proposed to explore the potential connections between the current path and the target 
node from another perspective. 

Assume that the description of the functional requirements given by designers are accurate 
enough, which is normally true. It can be seen that the closer the functional unit chosen is to the 
target input, i.e., a smaller redundancy number of the current path, the more consistent the chosen 
FU is with the designer's idea. Then, we assert that the current path is more likely to lead to the 
target output, i.e., healthier. 

Based on this hypothesis, the failure reward, a floating number from 0 to 1, is proposed to 
measure the health of the resulting path if the agent encounters a search failure. The failure reward 
can encourage the agent to explore a healthier path and is defined similarly to the success reward 
by Eq.(4). 

 )
10

1,0max( g
fail

redn
r −=

 
(4)

 
It can be seen that when the path deviates seriously from the target functional requirement, the 
redundancy number will be relatively large, and according to the experiments, this number is 
greater than or equal to 10. It is important to note that health cannot reflect the distance between 
the current node and the target node.For example, there is a target node Ed that the agent reached 
at time step 20, and coincidentally, the redundancy number of the resulting path is 0 at both time 
step 1 and time step 19. The path got the same health degree at these two time steps, but the 
distance between the agent and Ed at time step 19 is significantly closer than that at time step 1. 
Therefore, the health is a kind of orientation information which is not strong enough to be used as 
a parameter of process reward. 
(4) Death reward There is a special termination state not mentioned in the above episode 



definition, i.e., the agent stops searching because there is no legal next node to go. This state is 
also a search failure, but as it is similar to the situation that the agent reaches a dead corner in the 
maze problem which should be avoided, we distinguish this reward from the failure reward and 
call it the death reward. The value of the death reward is 0. 

Generally speaking, the rewards of the closer time step is more reliable thanthose of the far 
away time steps. Therefore, the return 𝐹𝐹 is usually defined as the weighted sum of the rewards 
shown in Eq.(4). 
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where 𝛾𝛾 ∈ [0,1]represents the discount factor, the smaller this factor, the more myopic of agents. 
In this paper, 𝛾𝛾is set to 1, because the FKI task produces non-zero rewards only at the last time 
step, and the early node selection is also very important for the final reward generation. 

3.2.3Input Features of Q-Network 

The input features of the Q-networkare the concatenated representation of state and action, 
including the current node, the adjacency node, the local redundancy number between the current 
node and its successors, the action trajectory, the global redundancy number, and the target 
functional requirements.  

Except that the two redundancy numbersare 
expressed in integer directly, other FU relevant 
states or actionsare represented by theInput and 
Output, which are encoded as an 𝑎𝑎 × 𝑦𝑦 matrix 
as shown in Fig.7.𝑎𝑎is the maximum number of 
inputsoroutputs, and 𝑦𝑦  denotesthe maximal 
number of keywords allowed. Each row in the 
matrix corresponds to one input/output, each 
element in column 1 to column (𝑦𝑦 − 1) 
corresponds to a modifier, and the last column 
corresponds to the core word. For each element 

in the matrix, if the corresponding keyword exists, its value is equaltothe word vector of the 
keyword; otherwise, it is the zero vector of the same dimension. To reduce the matrix size, an 
output is represented by the average value of the corresponding word vectors of all keywords 
when encoding action trajectory. 

For theimplementation, the values of 𝑎𝑎  and 𝑦𝑦  are set as 12 and 6, respectively. 
ChineseEmbedding, an embedding dateset covers more than 12 million Chinese words and 
phrases released by Tencent AI Lab, is used to embed a keyword into a 200-dimensional vector. 
The complete input features are summarized in Table 3. 

3.2.4 Architecture of Q-Network & Training algorithm 

In order to ensure the efficiency of episode generation, the architecture of the Q-network is 
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designed as simple as possible, which consists of three components, i.e.,Conv, LSTM and MLP, as 
shown in Fig.8. The Conv part contains a convolution kernel with 200 channels and 12×6 size, 
and each convolution corresponds to a feature extraction of an input or output. The LSTM part is 
responsible for extracting sequential information in trajectory features, and it adopts theLSTM  

 
Fig. 8. Architecture of Q-Network. 

 
network with a single layer, single direction, and a 200 hidden size. The MLP part contains 7 fully 
connected layers with a hidden size of 512, and its output is a vector of size 𝑁𝑁 × 1, where 
𝑁𝑁represents the number of legal candidate actions or next nodes in the current state. For each 
inference of the network, the FU-relevant features are extracted by Conv and LSTM, then 
concatenated with the redundancy features to form a comprehensive feature. Based on these,MLP 
predicted the final Q-value.  

A complete training algorithm description is shown in Fig.9. It follows the overall steps of 
Every-visit DMC and uses the Mean Square Error (MSE) as the loss function. 

4Experiments 

4.1 Experimental Setup 

Most of the experiments in the literatureinclude only the effectiveness study of the algorithm 
[8,14,28]. They usually useone or a few specific real/well-designed design cases, including target 
functional requirements and known optimal paths, to demonstrate the algorithm execution details 
and validate the effectiveness. Algorithmperformance analysis using a large number of design 
casesis not considered. Currently, there are not enoughreal design cases available, and the 
scaleoftheKBs is not large. What’s more, it is hard to integrate these independent small 
open-source Knowledge bases because of the different representations and storage structures of 



FUs in each KB. Therefore, there are two dataset-level challenges for performance study. 
(1) The scale of the existing knowledge bases is small, reflected both in the small number of 

functional units (size) and the small mean degree of the functional units (complexity). It is noteasy 
to compare the algorithm performance by the executing results of FKI tasks in such knowledge 
bases. 

(2) There are few real design cases available in the existing knowledge base for testing the 
performance of the algorithms, so the experimental results have chanciness.  
Table 3 
Input features of Q-Network. 

 

 
Fig. 9. Training algorithm description of DMCS. 

 Feature Size 

Action 
Inputs matrix of the next node 200*12*6 

Outputs matrix of the next node 200*12*6 

State 

Matrix of target inputs 200*12*6 

Matrix of target outputs 200*12*6 

Outputs matrix of the current node 200*12*6 

Concatenated outputs matrix of the most recent 5 nodes 5*(12*200) 

Local redundancy number 1 

Redundancy number 1 



 

Fig. 10. The requirement generation algorithm. 
 



4.1.1Requirement Generation Algorithm 

There are two measures to evaluate the algorithm performance, one is the absolute performance, 
and the other is the relative performance. The absolute performance is obtained by comparing the 
resulting path with the optimal path, while the relative performance is measured by comparing the 
resulting paths obtained from different algorithms. The advantage of the relative performance is 
that the searching algorithms can be compared using generated target requirements instead of 
real-world cases.For challenge (2) just mentioned, the performance study in the paper is 
implemented by calculating the relative performance directly, rather than the traditional method of 
calculating the real performance first and then comparing the results.Thus, a requirement 
generation algorithm is provided to produce feasible target functional requirements randomly. 
Requirement generation is also the first step of FKI scenario generation. Feasiblemeans that the 
requirements can be satisfied by the existing functional units in the knowledge base, i.e., there are 
paths from node 𝑆𝑆𝑆𝑆to𝐸𝐸𝐸𝐸. 

Since the target requirements should be satisfied by the existing functional units, the target 
inputs/outputs must be a recombination of the existinginputs/outputs. The core idea of the 
requirement generation algorithm is to randomly select functional units from the FKG and 
combine their inputs/outputs for the new target functional requirement. The main steps of the 
algorithm are summarized as below. 

(1) Randomly select a node in the FKG as the start node 𝐴𝐴. Randomly generate a path starting 
from 𝐴𝐴 with length 𝑧𝑧,a random integer, and use the last node on the path as the end node 𝐵𝐵. The 
inputs of 𝐴𝐴are put into set 𝑖𝑖𝑒𝑒𝑠𝑠1, and the outputs of 𝐵𝐵 are inserted into set𝑜𝑜𝑒𝑒𝑠𝑠1. 

(2) To enhance the complexity of thefunction structure, the inputs/outputs of the start/end node 
need to be expanded. Randomly choose𝑒𝑒 functional unitsfrom the FKG, andput their inputs to set 
𝑖𝑖𝑒𝑒𝑠𝑠2. Similarly, randomly choose𝑒𝑒 functional units again from the FKG, andput their outputs to set 
𝑜𝑜𝑒𝑒𝑠𝑠2. 𝑒𝑒is a random number. 

(3) Let 𝑎𝑎 be the maximal number of inputs/outputs of a functional unit and𝑦𝑦 be a random 
number. Choose 𝑦𝑦elements in 𝑖𝑖𝑒𝑒𝑠𝑠1and no more than 𝑎𝑎 − 𝑦𝑦elements in 𝑖𝑖𝑒𝑒𝑠𝑠2 to form the target 
input set. To maintain the basic characteristics of 𝐴𝐴, 𝑦𝑦 should be larger than half of the size of 
𝑖𝑖𝑒𝑒𝑠𝑠1. At the same time, to construct the target output set using the same method.  

In this paper, 0 ≤ 𝑧𝑧 ≤ 7, 0 ≤ 𝑒𝑒 ≤ 2, 1 ≤ 𝑎𝑎 ≤ 12. It can be seen that according to the above 
algorithm, the starting point 𝐴𝐴 and ending point 𝐵𝐵mustbeconnected, and they can be used as 
𝑆𝑆𝑆𝑆and 𝐸𝐸𝐸𝐸 for a design requirement. Fig. 10shows the complete algorithm, including thepath loop 
detection, inputs and outputs de-duplication, etc. 

4.1.2 FKGExpansion 

Tohandle challenge (1), amanual-automatic hybrid method is used to expand the existing 
functional knowledge base, namely original FKG (FKGO ). In this part, the knowledge base 
provided by Chen [24] is taken as FKGO . It contains59 FUs and 21 real cases, and the expansion 
shouldmeet the followingtwo requirements. 

(1) Increase the size and complexity ofFKGO . 
(2) It should be guaranteed that the generation of functional units does not affect the original 
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real cases. It is not to separate the original functional units involved in the real cases from new 
generated functional units directly, as this will hinder the complexity of the design case from 
increasing with the expansion of the knowledge base. 

Since a FU can be regarded as an implementation of the corresponding target functional 
requirement, i.e., a FUis corresponding to a functional requirement, the requirement generation 
algorithm provided in Section 4.1.1can generateFUs. In detail, a new FU can be generated by 
expanding existing inputs and outputs to any existing FU. In this case, the inputs and outputs of 
the new FU are from the existing FUs, so its degree is high, i.e., the above requirement (1) is 
satisfied.  

One shortcoming of this method is that the new generated FUs are lack of logic and are not 
suitable as a part of a real case. To satisfy requirement (2), a new independent knowledge base is 
further built. The main steps of the whole expansion are as below. 

(1) A new knowledge base FKGC is built, which contains 59 new manually collected FUs. 
FKGO  and FKGC  are totally independent, i.e., the inputs/outputs of any two functional units from 
FKGO  and FKGC  are not matched. 

(2) Generate three new functional units based on each functional unit in FKGC , so the size of 
FKGC increases by triple. 

(3) Generate a new functional unit based on each functional unit in FKGO  as illustrated in Fig. 
11.Denote the FU taken fromFKGO  as the basic FU, and the new FU after expansion as the 
mutation FU. During expansion, the inputs of the mutation FU is the same as those of the basic FU, 
and its outputs is expanded by outputs selected randomly from FKGC . A unidirectional 
connection FKGO → FKGC is established.  

 
Fig.11. Special way of functional unit generation in FKG expansion. 

 
A simple proof that mutation FUsdo not affect the original optimal paths of the real cases is as 

follows. Taking any node and its adjacent nodes in the optimal path as an example, since the 
inputs of the mutation FU is unchanged compared with the basic FU, its left adjacent node is 
unchanged. The output of the mutation FU increases, and it is connected to FKGC . Because of the 
nonexistence of connection FKGC → FKGO , the extra outputs can not lead to end node 𝐸𝐸𝐸𝐸, so 
the right adjacent node remains the same. Compared with the mutation FU, the basic FU is always 
selected as a better node because of lower local redundancy, so the current node is unchanged. In 
conclusion, any node and its adjacent nodes in the optimal path change nothing after expansion, 
and the relationship is established between the cases and these two knowledge bases. 

(4) The final unified knowledge base, namelyFKG is obtained by merging FKGOandFKGC . 
The scale comparison of knowledge base before and after expansion is shown in Table 4. The 

experiments in the following sections are conducted basedon FKG.  



Table 4 
The scale comparison of FKG before and after expansion. 

 Function units 
(number) 

Triples(numbe
r) 

Complexity(mea
n degree) 

Cases(nu
mber) 

FKGO  59 52 1.76 21 

𝐅𝐅𝐅𝐅𝐅𝐅 354 6066 34.27 21 

 

 
Fig.12. Loss (a) and mean (b) reward w.r.t. the number of training episodes where the current 

number of episodes is divided by 500 and the mean reward is calculated base on the most recently 
100 episodes. 

 

4.2 Implementation Details & Training Condition 

DMCS algorithm is implemented based on Pytorch deep learning framework, ReLU activation 
function for MLP layers, Adam optimizer, and MSE loss function. The training completes in three 
days on a server with 20 processors of the 12th Gen Intel(R) Core(TM) i7-12700KF CPU @ 
3.61GHz and a NVIDIA GeForce RTX 3080 10GB GPU, and the convergence curve is shown in 
Fig.12. The values of each hyperparameter are as follows: maximum search length 𝐿𝐿 = 10, 
learning rate 𝜑𝜑 = 5𝑒𝑒 − 7, maximum episode number 𝑒𝑒𝑒𝑒𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 1500000, batch size 𝑏𝑏𝑎𝑎𝑆𝑆 =
512, experience replay threshold 𝑎𝑎𝑒𝑒𝑒𝑒𝑆𝑆ℎ 𝑎𝑎𝑒𝑒𝑠𝑠ℎ 𝑜𝑜𝑜𝑜𝐸𝐸 = 1536,and maximum buffer size 𝑏𝑏𝑏𝑏𝑏𝑏 = 20000. 

The losses throughout the training process is shown in Fig.12.(a). At the beginning of the 
training, the policy is learned from scratch, so there is a short period of rapid decline in losses. 
Then the agent enters the exploration period, and the policy is updated frequently, so the curve has 
a large fluctuation and shows a reverse growth. With the continuous decrease of ε, the policy 
tends to be stable, and then the losses decline to convergence. 

The rewards during the training process is shown in Fig.12.(b). Because of the interval epsilon 
greedy policy, the rewards increased regionally as the ε decreased regionally. The overall trend of 
the rewards in each region is to rise first and then flatten out, indicating that the training in each 
region is sufficient. Eventually, the rewards number converges at around 4.3. 
 



 
Fig.13. Demonstration of FKI process in Case one. A complete description of these FUs is 

available in the Appendix. 

4.3 Effectiveness & Case Study 

To verify the effectiveness of DMCS in solving the FKI problem, we executed DMCS on the 21 
real design cases mentioned in Section 4.1.2, and the results are shown in Table 5. The results 
show that DMCS successfully finds the optimal path in all cases and prove that DMCS can handle 
the FKI problem.  

To illustratehow DMCS works, the first case listed in Table 5 is chosen to demonstrate the 
complete FKI process, including the iterative process of multiple functional unit chain generation.  
Background Ina leisure center, there is a river flowing through.To achieve sustainable 
development, a device is needed to accomplish the hydropower generation to support the electrical 
appliances in the leisure center.  
Target requirements According to the requirement of this product, the target input is “flowing 
river” and the target output is “220V + electricity”. 
Execution of DMCS  
Iteration one Run DMCS with the target requirements. Path 1, the obtained optimal path, or to say, 
the functional unit chain, is shown in the dashed box labeled “Iteration one” inFig. 13.In this path, 
the input “velocity regulation signal”of 𝐹𝐹𝐹𝐹34 isnot matched. So, the self-matching is 
performed.Each unmatched input/output is checked to see if it can be matched by any other 
existing input/output in the path. After self-matching, this input still cannot be matched. Since it is 
the first iteration, no path merging operation is required, and the current path is the result of this 
iteration. 
Iteration twoAfter the first iteration, the target inputs/outputs of the following iteration are defined 
as the unmatched outputs/inputs of the previous iteration by default. As the health-oriented 
hypothesis mentioned, accurate target requirements are conducive to achieve a suitable path for 
DMCS. At the same time, it is good to amend the existing design direction by the product 
designers. Therefore, designers are allowed to add or remove the inputs/outputs from the default 
target requirements. In this design case, the default target output is “velocity regulation signal”, 
and there is no default target input, so “220V + electricity” is manually added to the target input 
according to the correlation.  

Run DMCS with the revised target requirements, and the optimal path (Path 2) is achieved as 
shown in the box labeled “Iteration two” in Fig. 13. Since there is no unmatched input or output in 
Path 2, the self-matching is passed. 



Now there are two optimal paths, i.e., Path 1 and Path 2, and it is necessary to merge them. The 
target input and output used in Iteration two connect with nodes 𝐹𝐹𝐹𝐹34 and 𝐹𝐹𝐹𝐹6 of Path 1 by 
Node𝐹𝐹𝐹𝐹22 in Path 2, and the relationship is shown with lines labeled Merge in Fig. 13. The 
merged path is taken as the result of this iteration. More generally speaking, path merging is 
performed between the path obtained from the previous iteration and the current path, denoted 
𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖−1  and 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖  respectively. The target requirement is first updated, i.e., for the target 
requirement of 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖, if there are inputs or outputs that do not exist in 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖−1, add them to the 
corresponding target requirement of 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖−1. And then, the matching relationship is updated, i.e., 
each node in 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖  excluding 𝑆𝑆𝑆𝑆  and 𝐸𝐸𝐸𝐸  is checked whether it matches any nodes in 
𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖−1or not. If so, this node is inserted to 𝑒𝑒𝑎𝑎𝑆𝑆ℎ𝑖𝑖−1. 

As there is no unmatched input or output in the current iteration path, the algorithm ends and 
this path is taken as the final result. 

During the process, all mentioned keywords are converted to the corresponding bucket tag by 
default. In this case study,not too many features of the inputs/outputs areconsidered. For some 
inputs/outputs with the same keywords but different features, part of their features are retained as 
modifiers to be added to the keywords for discrimination. For example, the modifiers “220V” and 
“380V” in “220V + electricity” and “380V + electricity” are essentially preserved voltage 
features. 

To sum up, the overall framework of the proposed FKI method includes five parts, i.e., default 
requirement determination, requirement modification, functional unit chain generation, 
self-matching and merging. The flowchart is shown inFig. 14. 

 
Fig.14. The overall framework of FKI. 



Table5 
Result of effectiveness study where the value of success and optimal metrics are bool. 

Task Target Given Success Optimal 

1 EdFUFUFUFUFUSt
000100

610373415 →→→→→→  EdFUFUFUFUFUSt
000100

610373415 →→→→→→  1 1 

2 EdFUFUFUFUFUFUSt
1000102

28233817539 →→→→→→→  EdFUFUFUFUFUFUSt
1000102

28233817539 →→→→→→→  1 1 

... ... ... ... ... 

13 EdFUSt
00

35→→  EdFUSt
00

35→→  1 1 

... ... ... ... ... 

20 EdFUFUFUSt
0102

575244 →→→→  EdFUFUFUSt
0102

575244 →→→→  1 1 

21 EdFUSt
03

45→→  EdFUSt
03

45→→  1 1 

Mean - - 1.0 1.0 

 
Table6 
Performance comparison between algorithms. 

 Success(%) 
Lower redn(

%) 
Lower redn(wi

thin 3)(%) 
Mean redn 

Mean time
(s) 

Total time
(s) 

DMCS 90.40 74.56 92.92 6.13 0.02 22.33 

DFS 17.50 - - 3.14 104.65 265814.17 

DMCS(without 
𝑎𝑎𝑏𝑏𝑎𝑎𝑖𝑖𝑜𝑜 ) 

86.30 36.96 50.41 15.76 0.03 28.72 

4.4 Performance & Ablation Study 

To evaluate the performance of DMCS, the functional unit chain generation algorithm proposed 
by Chen [24] is selected as the counterpart. Chen’s algorithm is DFS (depth-first-search)based and 
referredto as DFS in this paper. In DFS, pruning is realized by memorization search, i.e., recording 
the paths from the visited node to the endnode 𝐸𝐸𝐸𝐸. However, this approach often leads to memory 
overflow during large-scale search tasks, even if only the optimal paths in different lengths are 
recorded. In order to ensure that the algorithm can run under the experimental conditions, the 
recorded content in each visited node is modified to be within a minimum step, or to say, if the 
distance between a node and the current node is beyond this minimum step, there will be no 
solution.  

DMCS and DFS both run on 1000 target functional requirements generated randomly by the 
algorithm mentioned in Section 4.1.1. For each run, since it is well known that the maximum 
search length greatly affects the time efficiency of traversal algorithm, it’s set to 8 as short as 
possible based on the possible lengths of the optimal paths, and the maximum search time is set to 
300s, as ample as is acceptable. The experimental results are shown in Table 6. The performance 



of these two algorithms is mainly compared from twoaspects. 
Computational efficiencyThe computational efficiency of the algorithmsare reflected by three 
metrics, i.e.,success, mean time and total time. Success denotes the probability that the algorithm 
completes the search within the maximum search time and gives the optimal path successfully, 
that is, the probability of successful search. Mean time denotes the mean searching time of the 
successful searches. Total time denotes the total time taken by the algorithm to complete all the 
search tasks. 
Results quality The quality comparison of the search results of the two algorithms is also 
reflected by three metrics, i.e.,lower redn, lower redn (within 3) and mean redn. Lower redn 
denotes the probability that the redundancy number of the optimal path obtained by DMCS is less 
than or equal to that of the corresponding DFS solution.Here, the DFS solution refers to the path 
with the minimum redundancy number found by DFS within the maximum search time, not 
necessarily the optimal path. This metric is counted only when the DMCS reaches a successful 
search. Lower redn (within 3) is defined on the basis of lower redn, and it denotes the probability 
that the redundancy number of the optimal path obtained by DMCS is less than or equal to the 
redundancy number plus 3 using DFS. Mean redn denotes the average redundancy number of the 
optimal paths obtained by DMCS or DFS solutions. 

The experimental results are shown in Table 6. It is clear that DMCS only sacrifices a small 
part of the resulting quality (doubledthe value of mean redn) in exchange for a much higher 
computational efficiency than DFS (about 4 times the successincrease and 5,000 times the mean 
time reduction). This result reveals the characteristics of these two algorithms. DMCS gets the 
approximate optimal solution directly by inference, while DFS gets the real optimal solution by 
traversing the search space. Therefore, it is foreseeable that if the scale of the knowledge base 
continues to expand, the quality gap of the results between DMCS and DFS will be smaller and 
smaller through adequate training, and the difference in computational efficiency will be bigger 
and bigger. Overall, DMCS is promising to achieve real-time FKI on ever-expanding design 
knowledge bases with acceptable optimality. 

To validate the effect of the health-oriented hypothesis on improving algorithm convergence, an 
ablation experiment was designed. It is a version of DMCS without 𝑎𝑎𝑏𝑏𝑎𝑎𝑖𝑖𝑜𝑜  reward, and after 
training, this new model runs under the same experimental conditions as the previous experiments. 
And according to the results, the performance of the DMCS without 𝑎𝑎𝑏𝑏𝑎𝑎𝑖𝑖𝑜𝑜  reward is muchlower 
than that of DMCS except for the mean time and total time. This result is 
inlinewiththeexpectationbecause the redundancy number is used to measure path optimality 
besidesthe health-oriented hypothesis. Therefore, the absence of 𝑎𝑎𝑏𝑏𝑎𝑎𝑖𝑖𝑜𝑜  reward not only affects the 
success, but also haseffect on the results quality. In conclusion, 𝑎𝑎𝑏𝑏𝑎𝑎𝑖𝑖𝑜𝑜  reward designed on 
health-oriented hypothesis can lead to a much better convergence quality of DMCS. 

5 Conclusion & Future work 

For facilitating the new product design, the integration algorithm of existing functional knowledge 
units is illustrated through a series of work, including knowledge base construction, episode 
definition, reward setting, and Q-Network design. 

We built a complete application framework of RL in FKI, and the DMCS algorithm is the 
kernel of this framework. DMCS has quite good computational efficiency in the real-time 



generation of functional unit chains in large-scale KBs compared with the traditional 
traverse-based searching algorithms. DMCS supports an optional automatic or 
semi-automaticiterative FKI by allowing designers to modify the existing functional design 
scheme and subsequent design direction during the design process.  

For future work, considering the need for further refinement of the conceptual design scheme, 
we will make full of the 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑒𝑒𝑎𝑎 attribute of the functional unit to record more information such 
as price, weight, volume, and the life cycle of a product. Based on this information, the designer 
can choose the appropriate specific design prototype for each abstract function in the scheme 
according to the requirements. The current evaluation of the optimal path considers only the 
redundant number, and a joint metric should be defined in the future. Last but not least, we will try 
more methods to continue improving the performance of the RL algorithm, such as parallelization, 
trying other neural architectures and balance strategies between exploration and exploitation.  
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Appendix 
Table 7lists all the FUs mentioned in the case study.  
Table 7 
A complete description of the FUs mentioned in Fig. 13. 

ID：FU6          Category：Transformation 

Input1: Modifier：None 

Core word：electricity 

Features：{(voltage, 380, V), (phase number, 3, None), (AC/DC, AC, None), (power, [50, 150], kW)} 

Output1: Modifier：None 

Core word：electricity 

Features：{(voltage, 220, V), (frequency, 60, Hz), (phase number, 3, None), (AC/DC, AC, None), (power, [50, 
150], kW)} 

Prior: (FU9, FU10, FU127, FU128) 

Next: (FU7, FU16, FU22, FU24, FU32, FU39, FU44, FU45, FU50, FU59, FU125, FU134, FU140, FU142, FU150, 
FU157, FU162, FU163, FU168, FU177) 

Carrier: (transformer) 

ID：FU10         Category：Transformation 

Input1: Modifier：(Rotational) 

Core word：mechanical energy 

Features：{(rotational speed, [900,4000], r/min), (torque, [11,25], N.m)} 

https://doi.org/10.27307/d.cnki.gsjtu.2018.000634�
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Output1: Modifier：None 

Core word：electricity 

Features：{(voltage, 380, V), (phase number, 3, None), (AC/DC, AC, None), (power, [95, 105], kW)} 

Prior: (FU7, FU37, FU125, FU155) 

Next: (FU6, FU124) 

Carrier: (alternating-current generator) 

ID：FU15         Category：Transformation 

Input1: Modifier：None 

Core word：flowing warter 

Features：{(flow velocity, [0.8,2], m/s), (flow rate, [0.65,1.87], m3/s)} 

Output1: Modifier：(water) 

Core word：kinetic energy 

Features：{(maximum storage depth, 4, m)} 

Prior: None 

Next: (FU34, FU152) 

Carrier: (dam) 

ID：FU22         Category：Transformation 

Input1: Modifier：None 

Core word：electricity 

Features：{(voltage, 220, V), (frequency, 60, Hz), (phase number, 3, None), (AC/DC, AC, None), (power, [50, 
150], kW)} 

Output1: Modifier：(velocity) 

Core word：regulation signal 

Features：{(voltage, [3,5], V)} 

Prior: (FU6, FU12, FU124, FU130) 

Next: (FU34, FU152) 

Carrier: (velocity regulator) 

ID：FU34          Category：Transformation 

Input1: Modifier：(water) 



Core word：potential energy 

Features：None 

Input2: Modifier：(velocity) 

Core word：regulation signal 

Features：{(voltage, [3,5], V)} 

Output1: Modifier：(water) 

Core word：kinetic energy 

Features：{(flow velocity, [5,20], m/s)} 

Prior: (FU15, FU22, FU133, FU140) 

Next: (FU37, FU155) 

Carrier: (control gate, drainage gate) 

ID：FU37         Category：Transformation 

Input1: Modifier：(water) 

Core word：kinetic energy 

Features：{(flow velocity, [4,25], m/s)} 

Output1: Modifier：(Rotational) 

Core word：mechanical energy 

Features：{(rotational speed, [1000,3000], r/min), (torque, [11,20], N.m)} 

Prior: (FU34, FU152) 

Next: (FU10, FU128) 

Carrier: (hydraulic turbine) 
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